Advertisement

Machine Vision Systems for Industrial Quality Control Inspections

  • Ricardo Luhm Silva
  • Marcelo Rudek
  • Anderson Luis Szejka
  • Osiris Canciglieri Junior
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 540)

Abstract

In this paper we introduce Machine Vision System (MVS) for industrial quality control inspections presenting new perspectives with the recent developments of Artificial Intelligence (AI). A brief literature review is provided which indicates a substantial growth of machine vision new studies and an improved workflow is proposed to include these findings. Besides already existing machine vision solutions there is space to increase detection in quality control inspection and reduce current implementation constraints and technical limitations. The paper shows MVS new development and evinces that a deeper understanding of AI, MVS limitations is needed to provide a clearer path for future studies.

Keywords

Machine vision Industrial inspection Machine learning Artificial intelligence 

Notes

Acknowledgments

This work was supported by Araucaria Foundation for Science and Technology/ FA-PR under Grant 40/2017 and Renault Brazil.

References

  1. 1.
    Vergara-Villegas, O.O., Cruz-Sánchez, V.G., de Jesús Ochoa-Domínguez, H., de Jesús Nandayapa-Alfaro, M., Flores-Abad, Á.: Automatic product quality inspection using computer vision systems. In: García-Alcaraz, J.L., Maldonado-Macías, A.A., Cortes-Robles, G. (eds.) Lean Manufacturing in the Developing World, pp. 135–156. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04951-9_7CrossRefGoogle Scholar
  2. 2.
    Satorres, S., Gómez, J., Gámez, J., Sánchez, A.: A machine vision system for defect characterization on transparent parts with non-plane surfaces. Mach. Vis. Appl. 23(1), 1–13 (2012).  https://doi.org/10.1007/s00138-010-0281-0CrossRefGoogle Scholar
  3. 3.
    Szkilnyk, G.: Vision-based fault detection in assembly automation, Thesis, Queen’s University, Canada (2012)Google Scholar
  4. 4.
    Golnabi, H., Asadpour, A.: Design and application of industrial machine vision systems. Robot. Comput.-Integr. Manuf. 23(6), 630–637 (2007).  https://doi.org/10.1016/j.rcim.2007.02.005CrossRefGoogle Scholar
  5. 5.
    Labudzki, R., Legutko, S., Raos, P.: The essence and applications of machine vision. Tehnicki Vjesnik 21(4), 903–909 (2014)Google Scholar
  6. 6.
    Lerones, P., Fernández, J., García-Bermejo, J., Zalama, E.: Total quality control for automotive raw foundry brake disks. Int. J. Adv. Manuf. Technol. 27(3–4), 359–371 (2005).  https://doi.org/10.1007/s00170-004-2165-9CrossRefGoogle Scholar
  7. 7.
    Pérez, L., Rodríguez, Í., Rodríguez, N., Usamentiaga, R., García, D.F.: Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors 16(3), 335 (2016).  https://doi.org/10.3390/s16030335CrossRefGoogle Scholar
  8. 8.
    Wang, J., Ma, Y., Zhang, L., Gao, R. X., Wu, D.: Deep learning for smart manufacturing: methods and applications. J. Manuf. Syst. (2018).  https://doi.org/10.1016/j.jmsy.2018.01.003. In-press
  9. 9.
    Chauhan, V., Surgenor, B.: A comparative study of machine vision based methods for fault detection in an automated assembly machine. Procedia Manuf. 1, 416–428 (2015).  https://doi.org/10.1016/j.promfg.2015.09.051CrossRefGoogle Scholar
  10. 10.
    Su, X., Zhang, Q.: Dynamic 3-D shape measurement method: a review. Opt. Lasers Eng. 48(2), 191–204 (2010).  https://doi.org/10.1016/j.optlaseng.2009.03.012CrossRefGoogle Scholar
  11. 11.
    Van der Jeught, S., Dirckx, J.J.: Real-time structured light profilometry: a review. Opt. Lasers Eng. 87, 18–31 (2016).  https://doi.org/10.1016/j.optlaseng.2016.01.011CrossRefGoogle Scholar
  12. 12.
    Zhong, R.Y., Xu, X., Klotz, E., Newman, S.T.: Intelligent manufacturing in the context of Industry 4.0: a review. Engineering 3(5), 616–630 (2017).  https://doi.org/10.1016/J.ENG.2017.05.015CrossRefGoogle Scholar
  13. 13.
    Pal, A., Dasgupta, R., Saha, A., Nandi, B.: Human-like sensing for robotic remote inspection and analytics. Wirel. Pers. Commun. 88(1), 23–38 (2016).  https://doi.org/10.1007/s11277-016-3239-3CrossRefGoogle Scholar
  14. 14.
    Leitão, P., Colombo, A.W., Karnouskos, S.: Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges. Comput. Ind. 81, 11–25 (2016).  https://doi.org/10.1016/j.compind.2015.08.004CrossRefGoogle Scholar
  15. 15.
    Nagato, T., Koezuka, T.: Automatic generation of image-processing programs for production lines. Fujitsu Sci. Tech. J. 52(1), 27–33 (2016)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Ricardo Luhm Silva
    • 1
  • Marcelo Rudek
    • 1
  • Anderson Luis Szejka
    • 1
  • Osiris Canciglieri Junior
    • 1
  1. 1.Industrial and Systems Engineering Graduate ProgramPontifical Catholic University of ParanaCuritibaBrazil

Personalised recommendations