Advertisement

Multi-aspect Ontology for Semantic Interoperability in PLM: Analysis of Possible Notations

  • Alexander Smirnov
  • Nikolay Shilov
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 540)

Abstract

Product lifecycle management covers a number of stages that deal with different tasks and apply different methods but require intensive information exchange to be efficient. Information support of these stages has to address this problem. However, successful implementation of information support systems requires solving the problem of interoperability of heterogeneous information related to different PLM stages. The paper investigates the problem of developing a single ontology for PLM support taking into account differences between terminologies (multi-aspect ontology) used at various stages of the PLM cycle. Different options of designing ontologies covering multiple domains have been considered. Three of them: (i) ontology localization/multilingual ontologies (ii) granular ontologies, and (iii) ontologies with temporal logics are considered in details and analysed. The analysis is based on the case study of PLM support at the automation equipment producer Festo AG & Co KG.

Keywords

Information management Interoperability Multi-aspect Ontology 

Notes

Acknowledgements

The paper is due to collaboration between SPIIRAS and Festo AG & Co KG, State Research # 0073-2018-0002, projects funded by grants ## 18-07-01201, 18-07-01272 of the Russian Foundation for Basic Research. The work has been partially financially supported by Government of Russian Federation, Grant 074-U01.

References

  1. 1.
    Smirnov, A., Kashevnik, A., Teslya, N., et al.: Knowledge management for complex product development framework and implementation. IFIP Adv. Inf. Commun. Technol. 409, 110–119 (2013)CrossRefGoogle Scholar
  2. 2.
    Smirnov, A., Shilov, N., Oroszi, A., Sinko, M., Krebs, T.: Changing information management in product-service system PLM: customer-oriented strategy. In: Ríos, J., Bernard, A., Bouras, A., Foufou, S. (eds.) PLM 2017. IAICT, vol. 517, pp. 701–709. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72905-3_62CrossRefGoogle Scholar
  3. 3.
    Oroszi, A., Jung, T., Smirnov, A., et al.: Ontology-driven codification for discrete and modular products. Int. J. Prod. Dev. 8, 162–177 (2009).  https://doi.org/10.1504/IJPD.2009.024186CrossRefGoogle Scholar
  4. 4.
    Smirnov, A., Shilov, N.: Ontology matching in collaborative recommendation system for PLM. Int. J. Prod. Lifecycle Manag. 6, 322–338 (2013).  https://doi.org/10.1504/IJPLM.2013.063210CrossRefGoogle Scholar
  5. 5.
    VDMA. German Engineering Federation (2018)Google Scholar
  6. 6.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5, 199–220 (1993).  https://doi.org/10.1006/knac.1993.1008CrossRefGoogle Scholar
  7. 7.
    Staab, S., Studer, R.: Handbook on Ontologies. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-92673-3CrossRefzbMATHGoogle Scholar
  8. 8.
    Asmae, A., Souhail, S., El Moukhtar, Z., Hussein, B.: Using ontologies for the integration of information systems dedicated to product (CFAO, PLM…) and those of systems monitoring (ERP, MES..). In: 2017 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), pp. 59–64. IEEE (2017)Google Scholar
  9. 9.
    Palmer, C., Urwin, E.N., Young, R.I.M., Marilungo, E.: A reference ontology approach to support global product-service production. Int. J. Prod. Lifecycle Manag. 10, 86 (2017).  https://doi.org/10.1504/IJPLM.2017.083003CrossRefGoogle Scholar
  10. 10.
    Lafleur, M., Terkaj, W., Belkadi, F., Urgo, M., Bernard, A., Colledani, M.: An onto-based interoperability framework for the connection of PLM and production capability tools. In: Harik, R., Rivest, L., Bernard, A., Eynard, B., Bouras, A. (eds.) PLM 2016. IAICT, vol. 492, pp. 134–145. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-54660-5_13CrossRefGoogle Scholar
  11. 11.
    Rachuri, S., Subrahmanian, E., Bouras, A., et al.: Information sharing and exchange in the context of product lifecycle management: role of standards. Comput. Des. 40, 789–800 (2008).  https://doi.org/10.1016/j.cad.2007.06.012CrossRefGoogle Scholar
  12. 12.
    Lim, S.C.J., Liu, Y., Lee, W.B.: A methodology for building a semantically annotated multi-faceted ontology for product family modelling. Adv. Eng. Inform. 25, 147–161 (2011).  https://doi.org/10.1016/j.aei.2010.07.005CrossRefGoogle Scholar
  13. 13.
    Felfernig, A., Friedrich, G., Jannach, D., et al.: Configuration knowledge representations for semantic web applications. Artif. Intell. Eng. Des. Anal. Manuf. 17, 31–50 (2003).  https://doi.org/10.1017/S0890060403171041CrossRefGoogle Scholar
  14. 14.
    Liao, Y., Lezoche, M., Panetto, H., Boudjlida, N.: Semantic annotations for semantic interoperability in a product lifecycle management context. Int. J. Prod. Res. 54, 5534–5553 (2016).  https://doi.org/10.1080/00207543.2016.1165875CrossRefGoogle Scholar
  15. 15.
    Yang, D., Miao, R., Wu, H., Zhou, Y.: Product configuration knowledge modeling using ontology web language. Expert Syst. Appl. 36, 4399–4411 (2009).  https://doi.org/10.1016/j.eswa.2008.05.026CrossRefGoogle Scholar
  16. 16.
    Espinoza, M., Montiel-Ponsoda, E., Gómez-Pérez, A.: Ontology localization. In: Proceedings of the Fifth International Conference on Knowledge Capture - K-CAP 2009, pp. 33–40. ACM Press, New York (2009)Google Scholar
  17. 17.
    Zadeh, L.A.: Is there a need for fuzzy logic? Inf. Sci. (Ny) 178, 2751–2779 (2008).  https://doi.org/10.1016/j.ins.2008.02.012MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Calegari, S., Ciucci, D.: Granular computing applied to ontologies. Int. J. Approx. Reason. 51, 391–409 (2010).  https://doi.org/10.1016/j.ijar.2009.11.006CrossRefzbMATHGoogle Scholar
  19. 19.
    Jankowski, A., Skowron, A.: Toward rough-granular computing. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 1–12. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72530-5_1CrossRefGoogle Scholar
  20. 20.
    Inuiguchi, M., Hirano, S., Tsumoto, S.: Rough Set Theory and Granular Computing. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-36473-3CrossRefzbMATHGoogle Scholar
  21. 21.
    Polkowski, L., Skowron, A.: Rough mereological calculi of granules: a rough set approach to computation. Comput. Intell. 17, 472–492 (2001).  https://doi.org/10.1111/0824-7935.00159MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tarassov, V., Fedotova, A., Stark, R., Karabekov, B.: Granular meta-ontology and extended Allen’s logic: some theoretical background and application to intelligent product lifecycle management systems Valery. In: Schwab, I., van Moergestel, L., Gonçalves, G. (eds.) INTELLI 2015: The Fourth International Conference on Intelligent Systems and Applications, St. Julians, Malta, pp. 86–93 (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.SPIIRASSt. PetersburgRussia

Personalised recommendations