Advertisement

Digital Twin Requirements in the Context of Industry 4.0

  • Luiz Fernando C. S. Durão
  • Sebastian Haag
  • Reiner Anderl
  • Klaus Schützer
  • Eduardo Zancul
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 540)

Abstract

Digital Twin (DT) is being considered a significant enabler for Industry 4.0 initiatives. Within Industry 4.0, the amount of digital product information generated and collected over the entire lifecycle has been growing. Current information and communication technologies, including data storage, data processing, and wireless data transmission, may be leveraged to digitally mirror the lifecycle of a corresponding physical product with increasing level of detail. A DT creates a link between physical products and their virtual models with more comprehensive data and accumulation of knowledge. Therefore, a DT may be applied to enhance simulation, traceability and to support the offering of value-added services along the lifecycle. However, the definition of a DT and its requirements are not yet fully established. The characteristics a DT model should possess to be widely used in manufacturing remains an open question in the literature. The concept is still broad and dependent on the lifecycle stage and industry sector of application. Therefore, the objective of this paper is to propose an initial synthesis of DT requirements based on a literature review and industry interviews. The literature review focuses on the content analysis of papers published from 2010 to 2018 and indexed in the ISI Web of Science database. The interviews were conducted with industry representatives in Brazil. The results show that DT requirements are related to real-time data, integration, and fidelity. Besides, it shows that industry requirements are close to literature and the actual implementation of DT is the future of research in this field.

Keywords

Digital Twin Industry 4.0 Product lifecycle management 

Notes

Acknowledgments

The authors thank the Coordination for the Improvement of Higher Education Personnel (Capes), the Brazilian National Council for Scientific and Technological Development (CNPq), and the German Research Foundation (DFG) for supporting related projects. The authors also thank the companies involved for providing real case applications.

References

  1. 1.
    Hobsbawn, E.: The Age of Revolution (1961)Google Scholar
  2. 2.
    Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group 82 (2013)Google Scholar
  3. 3.
    Schleich, B., Anwer, N., Mathieu, L., Wartzack, S.: Shaping the digital twin for design and production engineering. CIRP Ann. Manufact. Technol. 66, 141–144 (2017).  https://doi.org/10.1016/j.cirp.2017.04.040CrossRefGoogle Scholar
  4. 4.
    Tao, F., Zhang, M.: Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access 5, 20418–20427 (2017).  https://doi.org/10.1109/ACCESS.2017.2756069CrossRefGoogle Scholar
  5. 5.
    Rosen, R., Von Wichert, G., Lo, G., Bettenhausen, K.D.: About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine 28, 567–572 (2015).  https://doi.org/10.1016/j.ifacol.2015.06.141CrossRefGoogle Scholar
  6. 6.
    Zhang, H., Liu, Q., Chen, X., et al.: A digital twin-based approach for designing and decoupling of hollow glass production line. IEEE Access 1 (2017).  https://doi.org/10.1109/access.2017.2766453
  7. 7.
    Carvalho, M.M., Fleury, A., Lopes, A.P.: An overview of the literature on technology roadmapping (TRM): contributions and trends. Technol. Forecast Soc. Change 80, 1418–1437 (2013)CrossRefGoogle Scholar
  8. 8.
    Boote, D.N., Beile, P.: Scholars before researchers: on the centrality of the dissertation literature review in research preparation. Educ. Res. 34, 3–15 (2005).  https://doi.org/10.3102/0013189X034006003CrossRefGoogle Scholar
  9. 9.
    Durão, L.F.C.S., Grotti, M.V.F., Maceta, P.R.M., et al.: A review of the soft side in project management: concept, trends and challenges. GEPROS Gestão da Produção Operações e Sist 12, 157–176 (2017).  https://doi.org/10.15675/gepros.v12i2.1644CrossRefGoogle Scholar
  10. 10.
    Duriau, V., Reger, R., Pfarrer, M.D.: A content analysis of the content analysis literature in organization studies research themes, data sources, and methodological refinements. Organ. Res. Methods 10, 5–34 (2007)CrossRefGoogle Scholar
  11. 11.
    Anderl, R.: Industrie 4.0 - advanced engineering of smart products and smart production. In: 19° Seminário Internacional de Alta Tecnologia, Piracicaba (2014)Google Scholar
  12. 12.
    Piccard, A., Anderl, R.: Integrated component data model for smart production planning. In: 19° Seminário Internacional de Alta Tecnologia, Piracicaba (2014)Google Scholar
  13. 13.
    Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization, decentralization and network building change the manufacturing landscape: an Industry 4.0 perspective. Int. J. Mech. Aerosp. Ind. Mechatron. Eng. 8, 37–44 (2014)Google Scholar
  14. 14.
    Lee, J., Bagheri, B., Kao, H.: A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufact. Lett. 3, 18–23 (2015).  https://doi.org/10.1016/j.mfglet.2014.12.001CrossRefGoogle Scholar
  15. 15.
    Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. Procedia CIRP 17, 9–13 (2014)CrossRefGoogle Scholar
  16. 16.
    Tao, F., Cheng, J., Qi, Q., et al.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manufact. Technol. (2017).  https://doi.org/10.1007/s00170-017-0233-1CrossRefGoogle Scholar
  17. 17.
    Brenner, B., Hummel, V.: Digital twin as enabler for an innovative digital shopfloor management system in the ESB logistics learning factory at Reutlingen - University. Procedia Manufact. 9, 198–205 (2017).  https://doi.org/10.1016/j.promfg.2017.04.039CrossRefGoogle Scholar
  18. 18.
    Kubler, S., Robert, J., Hefnawy, A., et al.: Open IoT ecosystem for sporting event management. IEEE Access 5, 7064–7079 (2017).  https://doi.org/10.1109/ACCESS.2017.2692247CrossRefGoogle Scholar
  19. 19.
    Wiesner, S., Freitag, M., Westphal, I., Thoben, K.D.: Interactions between service and product lifecycle management. Procedia CIRP 30, 36–41 (2015).  https://doi.org/10.1016/j.procir.2015.02.018CrossRefGoogle Scholar
  20. 20.
    Belkadi, F., Bernard, A.: Trust-based patterns for the management of inter-enterprises collaborations in context of extended enterprise. IFAC-PapersOnLine 28, 1186–1191 (2015).  https://doi.org/10.1016/j.ifacol.2015.06.245CrossRefGoogle Scholar
  21. 21.
    Alam, K.M., El Saddik, A.: C2PS: a digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access 5, 2050–2062 (2017).  https://doi.org/10.1109/ACCESS.2017.2657006CrossRefGoogle Scholar
  22. 22.
    Canedo, A.: Industrial IoT lifecycle via digital twins. In: Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign System Synthesis - CODES 2016, vol. 1 (2016).  https://doi.org/10.1145/2968456.2974007
  23. 23.
    DebRoy, T., Zhang, W., Turner, J., Babu, S.S.: Building digital twins of 3D printing machines. Scr. Mater. 135, 119–124 (2017).  https://doi.org/10.1016/j.scriptamat.2016.12.005CrossRefGoogle Scholar
  24. 24.
    Knapp, G.L., Mukherjee, T., Zuback, J.S., et al.: Building blocks for a digital twin of additive manufacturing. Acta Mater. 135, 390–399 (2017).  https://doi.org/10.1016/j.actamat.2017.06.039CrossRefGoogle Scholar
  25. 25.
    Konstantinov, S., Ahmad, M., Ananthanarayan, K., Harrison, R.: The cyber-physical E-machine manufacturing system: virtual engineering for complete lifecycle support. Procedia CIRP 63, 119–124 (2017).  https://doi.org/10.1016/j.procir.2017.02.035CrossRefGoogle Scholar
  26. 26.
    Rodič, B.: Industry 4.0 and the new simulation modelling paradigm. Organizacija 50, 193–207 (2017).  https://doi.org/10.1515/orga-2017-0017CrossRefGoogle Scholar
  27. 27.
    Uhlemann, T.H.J., Lehmann, C., Steinhilper, R.: The digital twin: realizing the cyber-physical production system for industry 4.0. Procedia CIRP 61, 335–340 (2017).  https://doi.org/10.1016/j.procir.2016.11.152CrossRefGoogle Scholar
  28. 28.
    Uhlemann, T.H.J., Schock, C., Lehmann, C., et al.: The digital twin: demonstrating the potential of real time data acquisition in production systems. Procedia Manufact. 9, 113–120 (2017).  https://doi.org/10.1016/j.promfg.2017.04.043CrossRefGoogle Scholar
  29. 29.
    Vachálek, J., Bartalský, L., Rovný, O., et al.: The digital twin of an industrial production line within the Industry 4. 0 concept. In: 21st International Conference on Process Control, pp. 258–262 (2017)Google Scholar
  30. 30.
    West, T.D., Blackburn, M.: Is digital thread/digital twin affordable? a systemic assessment of the cost of DoD’s latest Manhattan project. Procedia Comput. Sci. 114, 47–56 (2017).  https://doi.org/10.1016/j.procs.2017.09.003CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Luiz Fernando C. S. Durão
    • 1
  • Sebastian Haag
    • 2
  • Reiner Anderl
    • 2
  • Klaus Schützer
    • 1
  • Eduardo Zancul
    • 1
  1. 1.University of São PauloSão PauloBrazil
  2. 2.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations