An Algebraic Approach to Integration of Geometric Rough Paths

  • Danyu YangEmail author
Conference paper
Part of the Abel Symposia book series (ABEL, volume 13)


We build a connection between rough path theory and a non-commutative algebra, and interpret the integration of geometric rough paths as an example of a non-abelian Young integration. We identify a class of slowly-varying one-forms, and prove that the class is stable under basic operations.



The author would like to express sincere gratitude to Prof. Terry Lyons for numerous inspiring discussions that eventually lead to this paper. The author also would like to thank Prof. Martin Hairer, Sina Nejad, Dr. Horatio Boedihardjo, Dr. Xi Geng, Dr. Ilya Chevyrev and Vlad Margarint for discussions and suggestions on (an earlier version of) the paper, and thank Prof. Kurusch Ebrahimi-Fard and anonymous referees for constructive suggestions.


  1. 1.
    Aguiar, M.: Pre-Ppoisson algebras. Lett. Math. Phys. 54(4), 263–277 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berstel, J., Reutenauer, C.: Noncommutative rational series with applications, vol. 137. Cambridge University Press, Cambridge (2011)zbMATHGoogle Scholar
  3. 3.
    Boedihardjo, H., Geng, X., Lyons, T., Yang, D.: The signature of a rough path: uniqueness. Adv. Math. 293, 720–737 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, K.T.: Iterated integrals and exponential homomorphisms. Proc. Lond. Math. Soc. 3(1), 502–512 (1954)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, K.T.: Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65, 163–178 (1957)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, K.T.: Integration of paths – a faithful representation of paths by noncommutative formal power series. Trans. Am. Math. Soc. 89(2), 395–407 (1958)zbMATHGoogle Scholar
  7. 7.
    Ebrahimi-Fard, K.: Loday-type algebras and the Rota–Baxter relation. Lett. Math. Phys. 61(2), 139–147 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Eilenberg, S., Lane, S.M.: On the groups H (Π, n), I. Ann. Math. 58, 55–106 (1953)CrossRefGoogle Scholar
  9. 9.
    Feyel, D., de La Pradelle, A., Mokobodzki, G.: A non-commutative sewing lemma. Electron. Commun. Probab. 13, 24–34 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Friz, P., Gassiat, P., Lyons, T.: Physical Brownian motion in a magnetic field as a rough path. Trans. Am. Math. Soc. 367(11), 7939–7955 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216(1), 86–140 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hambly, B., Lyons, T.: Uniqueness for the signature of a path of bounded variation and the reduced path group. Ann. Math. 171(1), 109–167 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kawski, M., Sussmann, H.J.: Noncommutative power series and formal Lie-algebraic techniques in nonlinear control theory. In: Operators, Systems and Linear Algebra, pp. 111–128. Springer (1997)Google Scholar
  14. 14.
    Loday, J.L.: Dialgebras. In: Dialgebras and Related Operads, pp. 7–66. Springer, Berlin/ Heidelberg (2001)Google Scholar
  15. 15.
    Lyons, T.: On the non-existence of path integrals. Proc. Roy. Soc. A. 432, 281–290 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lyons, T.J.: Differential equations driven by rough signals. Rev. Mat. Iberoam. 14(2), 215–310 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lyons, T.J., Yang, D.: The theory of rough paths via one-forms and the extension of an argument of Schwartz to rough differential equations. J. Math. Soc. Jpn. 67(4), 1681–1703 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lyons, T.J., Caruana, M., Lévy, T.: Differential Equations Driven by Rough Paths. Springer, Berlin/Heidelberg (2007)zbMATHGoogle Scholar
  19. 19.
    Lyons, T., Ni, H., Oberhauser, H.: A feature set for streams and an application to high-frequency financial tick data. In: Proceedings of the 2014 International Conference on Big Data Science and Computing. ACM (2014)Google Scholar
  20. 20.
    Malvenuto, C.: Produits et coproduits des fonctions quasi-symétriques et de l’algèbre des descentes. Université du Québec à Montréal, Montréal (1994)Google Scholar
  21. 21.
    Malvenuto, C., Reutenauer, C.: Duality between quasi-symmetrical functions and the solomon descent algebra. J. Algebra 177(3), 967–982 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Poirier, S., Reutenauer, C.: Algèbres de Hopf de tableaux. Ann. Sci. Math. Quebec 19(1), 79–90 (1995)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ree, R.: Lie elements and an algebra associated with shuffles. Ann. Math. 68, 210–220 (1958)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Reutenauer, C.: Free Lie algebras. Clarendon Press, Oxford (1993)zbMATHGoogle Scholar
  25. 25.
    Ronco, M.: Primitive elements in a free dendriform algebra. Contemp. Math. 267, 245–264 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Schützenberger, M.P.: Sur une propriété combinatoire des algebres de Lie libres pouvant être utilisée dans un probleme de mathématiques appliquées. Séminaire Dubreil. Algèbre et théorie des nombres 12(1), 1958–1959 (1958)Google Scholar
  27. 27.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, vol. 2. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  28. 28.
    Wiener, N.: The quadratic variation of a function and its fourier coefficients. J. Math. Phys. 3(2), 72–94 (1924)CrossRefGoogle Scholar
  29. 29.
    Xie, Z., Sun, Z., Jin, L., Ni, H., Lyons, T.: Learning spatial-semantic context with fully convolutional recurrent network for online handwritten Chinese text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1903–1917 (2017)CrossRefGoogle Scholar
  30. 30.
    Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67(1), 251–282 (1936)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNTNUTrondheimNorway

Personalised recommendations