Advertisement

A Review on Comodule-Bialgebras

  • Dominique ManchonEmail author
Conference paper
Part of the Abel Symposia book series (ABEL, volume 13)

Abstract

We review some recent applications of the notion of comodule-bialgebra in several domains such as Combinatorics, Analysis and Quantum Field Theory.

Notes

Acknowledgements

I thank Kurusch Ebrahimi–Fard for his encouragements, as well as Yvain Bruned, Martin Hairer and Lorenzo Zambotti for introducing me to regularity structures. Special thanks to Yvain for illuminating discussions and for providing me the example in Sect. 9.

References

  1. 1.
    Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras. CRM Monograph Series, vol. 29. American Mathematical Society, Providence (2010)Google Scholar
  2. 2.
    Brouder, Ch.: Runge-Kutta methods and renormalization. Eur. Phys. J. C Part. Fields 12, 512–534 (2000)Google Scholar
  3. 3.
    Bruned, Y.: Equations singulières de type KPZ, Ph.D. Thesis, Univerity Paris 6, Dec 2015Google Scholar
  4. 4.
    Bruned, Y., Hairer, M., Zambotti, L.: Algebraic renormalisation of regularity structures. arXiv:1610.08468 (2016)Google Scholar
  5. 5.
    Bruned, Y., Chevyrev, I., Friz, P., Preiss, R.: A rough paths perspective on renormalization. arXiv:1701.01152 (2017)Google Scholar
  6. 6.
    Butcher, J.C.: An algebraic theory of integration methods. Math. Comput. 26, 79–106 (1972)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Calaque, D., Ebrahimi-Fard, K., Manchon, D.: Two interacting Hopf algebras of trees. Adv. Appl. Math. 47(2), 282–308 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chandra, A., Weber, H.: An analytic BPHZ theorem for regularity structures. arXiv:1612.08138 (2016)Google Scholar
  9. 9.
    Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001, 395–408 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chartier, Ph., Hairer, E., Vilmart, G.: Numerical integrators based on modified differential equations. Math. Comput. 76, 1941–1953 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199, 203–242 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dür, A.: Möbius Functions, Incidence Algebras and Power Series Representations. Lecture Notes in Mathematics, vol. 1202. Springer, Berlin (1986)Google Scholar
  13. 13.
    Ebrahimi-Fard, K., Fauvet, F., Manchon, D.: A comodule-bialgebra structure for word-series substitution and mould composition. J. Algebra 489, 552–581 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ecalle, J.: Les fonctions résurgentes, vol. 1. Publications Mathématiques d’Orsay (1981). Available at http://portail.mathdoc.fr/PMO/feuilleter.php?id=PMO_1981
  15. 15.
    Ecalle, J.: Singularités non abordables par la géométrie. Ann. Inst. Fourier 42(1–2), 73–164 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ecalle, J., Vallet, B.: Prenormalization, correction, and linearization of resonant vector fields or diffeomorphisms. Prepub. Math. Orsay 95–32, 90 (1995)Google Scholar
  17. 17.
    Ecalle, J., Vallet, B.: The arborification-coarborification transform: analytic, combinatorial, and algebraic aspects. Ann. Fac. Sci. Toulouse XIII(4), 575–657 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fauvet, F., Foissy, L., Manchon, D.: The Hopf algebra of finite topologies and mould composition. Ann. Inst. Fourier. arXiv:1503.03820 (2015, to appear)Google Scholar
  19. 19.
    Fauvet, F., Foissy, L., Manchon, D.: Operads of finite posets. Electron. J. Comb. 25(1), 29 pp. (2018)Google Scholar
  20. 20.
    Fauvet, F., Menous, F.: Ecalle’s arborification-coarborification transforms and the Connes–Kreimer Hopf algebra. Ann. Sci. Éc. Norm. Sup. 50(1), 39–83 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Foissy, L.: Les algèbres de Hopf des arbres enracinés décorés I,II. Bull. Sci. Math. 126, 193–239, 249–288 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Foissy, L.: Algebraic structures associated to operads. arXiv:1702.05344 (2017)Google Scholar
  23. 23.
    Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hairer, M.: Introduction to regularity structures. Braz. J. Probab. Stat. 29, 175–210 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2002)Google Scholar
  26. 26.
    Hoffman, M.E.: Quasi-shuffle products. J. Algebraic Combin. 11, 49–68 (2000)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kassel, Chr.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)CrossRefGoogle Scholar
  28. 28.
    Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2, 303–334 (1998)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Manchon, D.: On bialgebra and Hopf algebra of oriented graphs. Confluentes Math. 4(1), 1240003 (10 pp.) (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Menous, F.: An example of local analytic q-difference equation: analytic classification. Ann. Fac. Sci. Toulouse XV(4), 773–814 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Molnar, R.K.: Semi-direct products of Hopf algebras. J. Algebra 45, 29–51 (1977)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Murua, A.: The Hopf algebra of rooted trees, free Lie algebras, and Lie series. Found. Comput. Math. 6, 387–426 (2006)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Murua, A., Sanz-Serna, J.-M.: Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. R. Soc. Lond. A 357, 1079–1100 (1999)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Murua, A., Sanz-Serna, J.-M.: Word series for dynamical systems and their numerical integrators. arXiv:1502.05528 [math.NA] (2015)Google Scholar
  35. 35.
    Murua, A., Sanz-Serna, J.-M.: Hopf algebra techniques to handle dynamical systems and numerical integrators. arXiv:1702.08354 [math.DS] (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.C.N.R.S.-UMR 6620Université Clermont-AuvergneAubièreFrance

Personalised recommendations