Advertisement

The Faà di Bruno Hopf Algebra for Multivariable Feedback Recursions in the Center Problem for Higher Order Abel Equations

  • Kurusch Ebrahimi-Fard
  • W. Steven Gray
Conference paper
Part of the Abel Symposia book series (ABEL, volume 13)

Abstract

Poincaré’s center problem asks for conditions under which a planar polynomial system of ordinary differential equations has a center. It is well understood that the Abel equation naturally describes the problem in a convenient coordinate system. In 1990, Devlin described an algebraic approach for constructing sufficient conditions for a center using a linear recursion for the generating series of the solution to the Abel equation. Subsequent work by the authors linked this recursion to feedback structures in control theory and combinatorial Hopf algebras, but only for the lowest degree case. The present work introduces what turns out to be the nontrivial multivariable generalization of this connection between the center problem, feedback control, and combinatorial Hopf algebras. Once the picture is completed, it is possible to provide generalizations of some known identities involving the Abel generating series. A linear recursion for the antipode of this new Hopf algebra is also developed using coderivations. Finally, the results are used to further explore what is called the composition condition for the center problem.

References

  1. 1.
    Alwash, M.A.M.: On a condition for a center of cubic non-autonomous equations. Proc. R. Soc. Edinb. 113, 289–291 (1989)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alwash, M.A.M.: The composition conjecture for Abel equation. Expo. Math. 27, 241–250 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alwash, M.A.M., Lloyd, N.G.: Nonautonomous equations related to polynomial two-dimensional systems. Proc. R. Soc. Edinb. 105A, 129–152 (1987)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berlin, L., Gray, W.S., Duffaut Espinosa, L.A., Ebrahimi-Fard, K.: On the performance of antipode algorithms for the multivariable output feedback Hopf algebra. In: Proceedings of the 51st Conference on Information Sciences and Systems, Baltimore (2017)Google Scholar
  5. 5.
    Briskin, M., Roytvarf, N., Yomdin, Y.: Center conditions at infinity for Abel differential equation. Ann. Math. 172, 437–483 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Briskin, M., Yomdin, Y.: Tangential version of Hilbert 16th problem for the Abel equation. Moscow Math. J. 5, 23–53 (2005)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Brudnyi, A.: Some algebraic aspects of the center problem for ordinary differential equations. Qual. Theory Dyn. Syst. 9, 9–28 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brudnyi, A.: Shuffle and Faà di Bruno Hopf algebras in the center problem for ordinary differential equations. Bull. Sci. Math. 140, 830–863 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cherkas, L.: Number of limit cycles of an autonomous second-order system. Differ. Uravn. 12, 944–946 (1976)Google Scholar
  10. 10.
    Devlin, J.: Word problems related to periodic solutions of a nonautonomous system. Math. Proc. Camb. Philos. Soc. 108, 127–151 (1990)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Devlin, J.: Word problems related to derivatives of the displacement map. Math. Proc. Camb. Philos. Soc. 110, 569–579 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Duffaut Espinosa, L.A., Ebrahimi-Fard, K., Gray, W.S.: A combinatorial Hopf algebra for nonlinear output feedback control systems. J. Algebra 453, 609–643 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Duffaut Espinosa, L.A., Gray, W.S.: Integration of output tracking and trajectory generation via analytic left inversion. In: Proceedings of the 21st International Conference on System Theory, Control and Computing, Sinaia, pp. 802–807 (2017)Google Scholar
  14. 14.
    Ebrahimi-Fard, K., Gray, W.S.: Center problem, Abel equation and the Faà di Bruno Hopf algebra for output feedback. Int. Math. Res. Not. 2017, 5415–5450 (2017)Google Scholar
  15. 15.
    Ferfera, A.: Combinatoire du Monoïde Libre Appliquée à la Composition et aux Variations de Certaines Fonctionnelles Issues de la Théorie des Systèmes. Doctoral dissertation, University of Bordeaux I (1979)Google Scholar
  16. 16.
    Ferfera, A.: Combinatoire du monoïde libre et composition de certains systèmes non linéaires. Astérisque 7576, 87–93 (1980)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Figueroa, H., Gracia-Bondiía, J.M.: Combinatorial Hopf algebras in quantum field theory I. Rev. Math. Phys. 17, 881–976 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fliess, M.: Fonctionnelles causales non linéaires et indéterminées non commutatives. Bull. Soc. Math. France 109, 3–40 (1981)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fliess, M.: Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives. Invent. Math. 71, 521–537 (1983)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Foissy, L.: The Hopf algebra of Fliess operators and its dual pre-Lie algebra. Commun. Algebra 43, 4528–4552 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Frabetti, A., Manchon, D.: Five interpretations of Faà di Bruno’s formula. In: Ebrahimi-Fard, K., Fauvet, F. (eds.) Faà di Bruno Hopf Algebras, Dyson-Schwinger Equations, and Lie-Butcher Series. IRMA Lectures in Mathematics and Theoretical Physics, vol. 21, pp. 91–147. European Mathematical Society, Zürich (2015)Google Scholar
  22. 22.
    Giné, J., Grau, M., Santallusia, X.: The center problem and composition condition for Abel differential equations. Expo. Math. 34, 210–222 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gray, W.S., Duffaut Espinosa, L.A.: A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback. Syst. Control Lett. 60, 441–449 (2011)CrossRefGoogle Scholar
  24. 24.
    Gray, W.S., Wang, Y.: Fliess operators on L p spaces: convergence and continuity. Syst. Control Lett. 46, 67–74 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gray, W.S., Wang, Y.: Formal Fliess operators with applications to feedback interconnections. In: Proceedings of the 18th International Symposium Mathematical Theory of Networks and Systems, Blacksburg (2008)Google Scholar
  26. 26.
    Gray, W.S., Duffaut Espinosa, L.A.: A Faà di Bruno Hopf algebra for analytic nonlinear feedback control systems. In: Ebrahimi-Fard, K., Fauvet, F., (eds.) Faà di Bruno Hopf Algebras, Dyson-Schwinger Equations, and Lie-Butcher Series. IRMA Lectures in Mathematics and Theoretical Physics, vol. 21, pp. 149–217. European Mathematical Society, Zürich (2015)Google Scholar
  27. 27.
    Gray, W.S., Duffaut Espinosa, L.A., Ebrahimi-Fard, K.: Recursive algorithm for the antipode in the SISO feedback product. In: Proceedings of the 21st International Symposium on the Mathematical Theory of Networks and Systems, Groningen, pp. 1088–1093 (2014)Google Scholar
  28. 28.
    Gray, W.S., Ebrahimi-Fard, K.: SISO affine feedback transformation group and its Faà di Bruno Hopf algebra. SIAM J. Control Optim. 55, 885–912 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gray, W.S., Duffaut Espinosa, L.A., Ebrahimi-Fard, K.: Faà di Bruno Hopf algebra of the output feedback group for multivariable Fliess operators. Syst. Control Lett. 74, 64–73 (2014)CrossRefGoogle Scholar
  30. 30.
    Gray, W.S., Duffaut Espinosa, L.A., Ebrahimi-Fard, K.: Analytic left inversion of multivariable Lotka-Volterra models. In: Proceedings of the 54nd IEEE Conference on Decision and Control, Osaka, pp. 6472–6477 (2015)Google Scholar
  31. 31.
    Gray, W.S., Duffaut Espinosa, L.A., Thitsa, M.: Left inversion of analytic nonlinear SISO systems via formal power series methods. Automatica 50, 2381–2388 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, London (1995)CrossRefGoogle Scholar
  33. 33.
    Kawski, M., Sussmann, H.J., Noncommutative power series and formal Lie-algebraic techniques in nonlinear control theory. In: Helmke, U., Pratzel-Wolters, D., Zerz, E. (eds.) Operators, Systems, and Linear Algebra: Three Decades of Algebraic Systems Theory, pp. 111–128. Teubner B.G, Stuttgart (1997)Google Scholar
  34. 34.
    Lijun, Y., Yun, T.: Some new results on Abel equations. J. Math. Anal. Appl. 261, 100–112 (2001)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Lloyd, N.G.: Small amplitude limit cycles of polynomial differential equations. In: Everitt, W.N., Lewis, R.T. (eds.) Ordinary Differential Equations and Operators. Lecture Notes in Mathematics, vol. 1032, pp. 346–357. Springer, Berlin (1982)CrossRefGoogle Scholar
  36. 36.
    Manchon, D.: Hopf algebras and renormalisation. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 5, pp. 365–427. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  37. 37.
    Nijmeijer, H., van der Schaft, A.J.: Nonlinear Dynamical Control Systems. Springer, New York (1990)CrossRefGoogle Scholar
  38. 38.
    Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle. Journal de Mathématiques, Series 3. 7, 375–422 (1881); 8, 251–296 (1882)Google Scholar
  39. 39.
    Reutenauer, C.: Free Lie Algebras. Oxford University Press, New York (1993)zbMATHGoogle Scholar
  40. 40.
    Sweedler, M.E.: Hopf Algebras. Benjamin, W.A., Inc., New York (1969)zbMATHGoogle Scholar
  41. 41.
    Thitsa, M., Gray, W.S.: On the radius of convergence of interconnected analytic nonlinear input-output systems. SIAM J. Control Optim. 50, 2786–2813 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wang, Y.: Differential Equations and Nonlinear Control Systems, Doctoral dissertation, Rutgers University, New Brunswick (1990)Google Scholar
  43. 43.
    Wang, Y.: Analytic constraints and realizability for analytic input/output operators. J. Math. Control Inf. 12, 331–346 (1995)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wang, Y., Sontag, E.D.: Generating series and nonlinear systems: analytic aspects, local realizability and i/o representations. Forum Math. 4, 299–322 (1992)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Wang, Y., Sontag, E.D.: Algebraic differential equations and rational control systems. SIAM J. Control Optim. 30, 1126–1149 (1992)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Wang, Y., Sontag, E.D.: Orders of input/output differential equations and state-space dimensions. SIAM J. Control Optim. 33, 1102–1126 (1995)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Yomdin, Y.: The center problem for the Abel equations, compositions of functions, and moment conditions. Moscow Math. J. 3, 1167–1195 (2003)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Old Dominion UniversityNorfolkUSA

Personalised recommendations