Elaboration and Characterization of New Ceramic Ultrafiltration Membranes from Natural Clay: Application of Treatment of Textile Wastewater

  • Saida BousbihEmail author
  • Emna Errais
  • Raja Ben Amar
  • Joelle Duplay
  • Malika Trabelsi-Ayadi
  • Fadila Darragi
Part of the Advances in Science, Technology & Innovation book series (ASTI)


A new filtration membrane was developed based on Tunisian natural clay. The choice of Tunisian clay as raw material in this work rests mainly on the related cost reduction and abundance characteristics, as the clay materials display noticeable ceramic pastes of a high plasticity and liable to exhibit an effective shaping ability. The raw material was milled and sieved at 250 µm, then mixed with water and organic additives to obtain a homogeneous paste. A ceramic porous tube was then prepared by extrusion and sintering at a temperature of 950 °C. Interesting properties of resistance to corrosion and extreme pH solutions as well as mechanical endurance were displayed. The deposition of a coating layer inside the tube was then achieved by means of “slip-casting” method, using 40 μm clay powder, water and polyvinyl alcohol solution (PVA). After thermal treatment at 800 °C, the membrane proved to be characterized with the water-permeability determination feature. The attained value of 256 L/h m2 bar appears to reveal that the prepared membrane proves to belong to the Ultrafiltration domain. The relevant liability to be applied to the treatment of industrial textile wastewater turns out to display an interesting retention liability of pollutants, in terms of COD (Chemical Organic Demand), of 80% and turbidity of (>99%). A total color retention disposition was also achieved at a pressure above five bars.


Membranes Support Separation Filtration Clay 


  1. 1.
    Cui, Z., Peng, W., Fan, Y., Xing, W., Xu, N.: Ceramic membrane filtration as seawater RO pre-treatment: influencing factors on the ceramic membrane flux and quality. Desal. Wat. Treat. 51, 2575–2583 (2013)Google Scholar
  2. 2.
    Kujawa, J., Kujawski, W., Koter, S., Jarzynka, K., Rosicka, A., Larbo, A.: Membrane distillation properties of TiO2 ceramic membranes modified by perfluoroalkylsilanes. Desal. Wat. Treat. 51, 1352–1361 (2013)CrossRefGoogle Scholar
  3. 3.
    Lee, S.H., Chung, K.C., Shin, M.C., Dong, J.I., Lee, H.S., Auh, K.H.: Preparation of ceramic membrane and application to the cross flow microfiltration of soluble waste oil. Mater. Lott. 52, 66–71 (2002)Google Scholar
  4. 4.
    Ding, X., Fan, Y., Xu, N.: A new route for the fabrication of TiO2 ultrafiltration membranes with suspension derived from a wet chemical synthesis. J. Membr. Sci. 270, 179–186 (2006)CrossRefGoogle Scholar
  5. 5.
    Larbot, A.: Fundamentals on inorganic membranes: present and new developments. Pol. J. Chem. Technol. 6, 8–13 (2003)Google Scholar
  6. 6.
    Cot, L., Ayral, A., Durand, J., Guizard, C., Hovnanian, N., Julbe, A., Larbot, A.: Inorganic membranes and solid state sciences. Solid State Sci. 2, 313–334 (2000)CrossRefGoogle Scholar
  7. 7.
    Yeung, K.L., Sebastian, J.M., Varma, A.: J. Membr. Sci. 131, 9 (1997)CrossRefGoogle Scholar
  8. 8.
    Ahmad, A.L., Sani, N.A.A., Zein, S.H.S.: Ceram. Int. 37, 2981 (2011)Google Scholar
  9. 9.
    Anbri, Y., Tijani, N., Coronas, J., Mateo, E., Menéndez, M., Bentama, J.: Desal. 221, 419 (2008)Google Scholar
  10. 10.
    Tahri, N., Jedidi, I., Cerneaux, S., Cretin, M., Ben Amar, R.: Development of an asymmetric carbon microfiltration membrane: application to the treatment of industrial textile wastewater. Sep. Purif. Technol. 118, 179–187 (2013)CrossRefGoogle Scholar
  11. 11.
    Masmoudi, M., Larbot, A., El Feki, H., Ben Amar, R.: Elaboration and characterisation of apatite based mineral supports for microfiltration and ultrafiltration membranes. Ceram. Int. 33(3), p337 (2007)CrossRefGoogle Scholar
  12. 12.
    Rakib, S., Sghyar, M., Rafiq, M., Larbot, A., Cot, L.: Elaboration et caracterisation d’une ceramique marcroporeuse à base d’arène granitique. Ann. Chim. Sci. Mat. 25, 567–576 (2000)CrossRefGoogle Scholar
  13. 13.
    Bouzrara, F., Harabi, R., Achour, S., Larbot, A.: Porous ceramic supports for membranes prepared from kaolin and doloma mixtures. J. Eur. Ceram. Soc. 26(9), 1663 (2006)CrossRefGoogle Scholar
  14. 14.
    Abidi, N., Duplay, J., Elmchaouri, A., Jada, A., Trabelsi-ayadi, M.: Textile dye adsorption onto raw clay: influence of clay surface properties and dyeing additives. J. Colloid Sci. Biotechnol. 3, 98–110 (2014)CrossRefGoogle Scholar
  15. 15.
    Khemakhem, S., Ben Amar, R., Ben Hassen, R., Larbot, A., Ben Salah, A., Cot, L.: Production of tubular ceramic membranes for microfiltration and ultrafiltration. Indust. Ceramics 24(3), 117–120 (2004)Google Scholar
  16. 16.
    Messaoudi, L., Larbot, A., Rafiq, M., Cot, L.: Mise au point d’une membrane de microfiltration sur supports tubulaires à base d’une argile marocaine. Ind. Ceram. Ver. 12(910), 831–835 (1995)Google Scholar
  17. 17.
    Khemakhem, M., Khemakhem, S., Ayedi, S., Ben Amar, R.: Study of ceramic ultra-filtration membrane support based on phosphate industry sub-product: application for the cuttlefish conditioning effluents treatment. Ceram. Int. 37, 3617–3625 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saida Bousbih
    • 1
    Email author
  • Emna Errais
    • 2
  • Raja Ben Amar
    • 3
  • Joelle Duplay
    • 4
  • Malika Trabelsi-Ayadi
    • 1
  • Fadila Darragi
    • 1
  1. 1.Laboratoire des applications de la Chimie aux ressources et substances naturelles et à l’environnement (LACRESNE), Faculté des sciences de BizerteUniversité de CarthageBizerteTunisie
  2. 2.Laboratoire Physique des Matériaux Lamellaires et Nanomatériaux Hybrides, Faculté des sciences de BizerteUniversité de CarthageBizerteTunisie
  3. 3.Laboratoire Sciences des Matériaux et Environnement, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisie
  4. 4.Laboratoire d’hydrologie et de géochimie de StrasbourgStrasbourgFrance

Personalised recommendations