Advertisement

Mg-Exchanged Montmorillonite Undergoing External Environmental Solicitation: Crystalline Swelling Process Investigation

  • Marwa Ammar
  • Walid OueslatiEmail author
  • Abdesslem Ben Haj Amara
Chapter
  • 285 Downloads
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

This work reports a characterization of the possible effects that might affect the hydration properties of Mg-exchanged low-charge montmorillonite (SWy-2-Mg) when undergoes an external environmental solicitation. The latter was created by an alteration of relative humidity rates (i.e. RH%) over two hydration-dehydration cycles with different sequence. The study was mainly based on the X-ray diffraction profile modeling approach. Obtained results show strong hydration dependence as a function of the RH sequence. The interlayer configuration presents a heterogeneous hydration behavior which was systematically observed at different stages of both cycles. The interlayer water uptake process presents similar hysteresis characterized by fluctuations of interlayer water molecule abundances.

Keywords

Clay mineral Ion exchange process Environmental solicitation XRD profile modeling approach 

References

  1. 1.
    Vengris, T.: Nickel, copper and zinc removal from waste water by modified clay sorbent. Appl. Clay Sci. 18, 183–190 (2001)CrossRefGoogle Scholar
  2. 2.
    Anderson, R.L.: Clay swelling-A challenge in the oilfield. Earth Sci. Rev. 98, 201–216 (2010)CrossRefGoogle Scholar
  3. 3.
    Gu, X.: Modeling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) onto montmorillonite. Geochim. Cosmochim. Acta 74, 5718–5728 (2010)CrossRefGoogle Scholar
  4. 4.
    Xu, Y.: Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere 27(2), 193–204 (2017)CrossRefGoogle Scholar
  5. 5.
    Tachi, Y.: Diffusion and sorption of Cs+, Na+, I and HTO in compacted sodium montmorillonite as a function of porewater salinity: Integrated sorption and diffusion model. Geochim. Cosmochim. Acta 132, 75–93 (2014)CrossRefGoogle Scholar
  6. 6.
    Huber, F.: Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles. Geochim. Cosmochim. Acta 148, 426–441 (2014)CrossRefGoogle Scholar
  7. 7.
    Mermut, A.R.: Baseline studies of the clay minerals society source clays: chemical analyses of major elements. Clays and Clay Miner 49(5), 381–386 (2001)CrossRefGoogle Scholar
  8. 8.
    Tessier, D. : Etude expérimentale de l’organisation des matériaux argileux. [these], Université de Paris VII, Publication INRA Versailles, Paris, France (1984)Google Scholar
  9. 9.
    Cuadros, J.: Experimental kinetic study of the smectite-to-illite transformation. Geochim. Cosmochim. Acta 60, 439–453 (1996)CrossRefGoogle Scholar
  10. 10.
    Ferrage, E.: New insights on the distribution of interlayer water in bi-hydrated smectite from X-ray difraction profile modeling of 00 l reflections. Chem. Mater. 17, 3499–3512 (2005)CrossRefGoogle Scholar
  11. 11.
    Oueslati, W.: XRD investigations of hydrated homoionic montmorillonite saturated by several heavy metal cations. Desalination 271, 139–149 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marwa Ammar
    • 1
  • Walid Oueslati
    • 1
    Email author
  • Abdesslem Ben Haj Amara
    • 1
  1. 1.UR13ES46 Physique Des Matériaux Lamellaires et Nano-Matériaux Hybrides (PMLNMH)Faculté Des Sciences de Bizerte, Université de CarthageZarzounaTunisia

Personalised recommendations