Dynamics of Water and Ions Near DNA: Perspective from Time-Resolved Fluorescence Stokes Shift Experiments and Molecular Dynamics Simulation

  • Him Shweta
  • Nibedita Pal
  • Moirangthem Kiran Singh
  • Sachin Dev Verma
  • Sobhan SenEmail author
Part of the Reviews in Fluorescence book series (RFLU)


The fact that ubiquitous water and ions are important for biological functions of biomolecules is well established. However, understanding the dynamics of water and ions near biomolecules such as DNA, protein and phospholipid is difficult, but essential, for comprehending biomolecular functions. While significant progress has been made to apprehend the hydration structure and dynamics around proteins and phospholipids, understanding dynamics of water and ions near DNA remains challenging. Time-resolved fluorescence Stokes shift (TRFSS) experiments and molecular dynamics (MD) simulation have unraveled several new insights about perturbed water and counterion dynamics near poly-anionic DNA from femtoseconds to nanoseconds time-scales, although with debated explanations of the dispersed DNA dynamics. Here we review the advances of TRFSS experiments and MD simulation studies that unfolded several fascinating, but complex, dynamical features of perturbed water and counterions near different DNA structures in solution.


DNA structures DNA hydration DNA binding ligands Dynamic Stokes shift MD simulation Solvation-correlation function 


  1. 1.
    Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101PubMedCrossRefGoogle Scholar
  2. 2.
    Bagchi B (2013) Water in biological and chemical processes: from structure and dynamics to function. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108:74–108PubMedCrossRefGoogle Scholar
  4. 4.
    Grossman M, Born B, Heyden M, Tworowski D, Fields GB, Sagi I, Havenith M (2011) Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat Struct Mol Biol 18:1102–1108PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kim SJ, Born B, Havenith M, Gruebele M (2008) Real-time detection of protein-water dynamics upon protein folding by terahertz absorption spectroscopy. Angew Chem Int Ed 47:6486–6489CrossRefGoogle Scholar
  6. 6.
    Gorfe A, Caflisch A, Jelesarov I (2004) The role of flexibility and hydration on the sequence-specific DNA recognition by the Tn916 integrase protein: a molecular dynamic analysis. J Mol Recognit 17:120–131PubMedCrossRefGoogle Scholar
  7. 7.
    Mukherjee A, Lavery R, Bagchi B, Hynes JT (2008) On the molecular mechanism of drug intercalation onto DNA: a simulation study of the intercalation pathway, free energy, and DNA structural changes. J Am Chem Soc 130:9747–9755PubMedCrossRefGoogle Scholar
  8. 8.
    Stillwell W (2013) An introduction to biological membranes. Elsevier, San DiegoCrossRefGoogle Scholar
  9. 9.
    Koshland DE (1958) Application of a theory of a enzyme specificity to protein synthesis. PNAS 44:98–104PubMedCrossRefGoogle Scholar
  10. 10.
    Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Crystalline ribonuclease: loses function below the dynamical transition at 220 K. Nature 357:423–424PubMedCrossRefGoogle Scholar
  11. 11.
    Pal N, Wu M, Lu HP (2016) Probing conformational dynamics of an enzymatic active site by an in situ single fluorogenic probe under piconewton force manipulation. Proc Natl Acad Sci USA 113:15006–15011PubMedCrossRefGoogle Scholar
  12. 12.
    O’Neill MA, Barton JK (2004) DNA-mediated charge transport requires conformational motion of the DNA bases: elimination of charge transport in rigid Glasses at 77 K. J Am Chem Soc 126:13234–13235PubMedCrossRefGoogle Scholar
  13. 13.
    Nag N, Rao BJ, Krishnamoorthy GJ (2007) Altered dynamics of DNA bases adjacent to a mismatch: a cue for mismatch recognition by MutS. Mol Biol 374:39–53CrossRefGoogle Scholar
  14. 14.
    Rossetti G, Dans PD, Gomez-Pinto I, Ivani I, Gonzalez C, Orozco M (2015) The structural impact of DNA mismatch. Nucleic Acids Res 43:4309–4321PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635PubMedCrossRefGoogle Scholar
  16. 16.
    Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE (1981) Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci USA 78:2179–2183PubMedCrossRefGoogle Scholar
  17. 17.
    Liepinish E, Otting G, Wüthrich K (1992) Synthesis and properties of mirror-image DNA. Nucleic Acids Res 20:6549–6553CrossRefGoogle Scholar
  18. 18.
    Nilasis N, Biman B (1998) Anomalous dielectric relaxation of aqueous protein solutions. J Phys Chem A 102:8217–8221CrossRefGoogle Scholar
  19. 19.
    Saif B, Mohr RK, Montrose CJ, Litovitz TA (1991) On the mechanism of dielectric relaxation in aqueous DNA solutions. Biopolymers 31:1171–1180PubMedCrossRefGoogle Scholar
  20. 20.
    Andreatta D, Pérez Lustres JL, Kovalenko SA, Ernsting NP, Murphy CJ, Coleman RS, Berg MA (2005) Power-law solvation dynamics in DNA over six decades in time. J Am Chem Soc 127:7270–7271PubMedCrossRefGoogle Scholar
  21. 21.
    Denisov VP, Halle B (1996) Protein hydration dynamics in aqueous solution. Farad Discuss 103:227–244CrossRefGoogle Scholar
  22. 22.
    Passino SA, Nagasawa Y, Joo T, Fleming GR (1997) Three-pulse echo peak shift studies of polar solvation dynamics. J Phys Chem A 101:725–731CrossRefGoogle Scholar
  23. 23.
    Siebert T, Guchhait B, Liu Y, Fingerhut BP, Elsaesser T (2016) Range, magnitude, and ultrafast dynamics of electric fields at the hydrated DNA surface. J Phys Chem Lett 7:3131–3136PubMedCrossRefGoogle Scholar
  24. 24.
    Oglivie JP, Plazanet M, Dadusc G, Miller RJD (2002) Dynamics of ligand escape in myoglobin: Q-band transient absorption and four-wave mixing studies. J Phys Chem B 106:10460–10467CrossRefGoogle Scholar
  25. 25.
    Pal SK, Zewail AH (2004) Dynamics of water in biological recognition. Chem Rev 104:2099–2124PubMedCrossRefGoogle Scholar
  26. 26.
    Laage D, Elsaesser T, Hynes JT (2017) Water dynamics in the hydration shells of biomolecules. Chem Rev 117:10694–10725PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Nandi N, Bhattacharyya K, Bagchi B (2000) Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem Rev 100:2013–2046PubMedCrossRefGoogle Scholar
  28. 28.
    Bagchi B (2005) Water dynamics in the hydration layer around proteins and micelles. Chem Rev 105:3197–3219PubMedCrossRefGoogle Scholar
  29. 29.
    Bhattacharyya K (2003) Solvation dynamics and proton transfer in supramolecular assemblies. Acc Chem Res 36:95–101PubMedCrossRefGoogle Scholar
  30. 30.
    Pal SK, Peon J, Bagchi B, Zewail AH (2002) Biological water: femtosecond dynamics of macromolecular hydration. J Phys Chem B 106:12376–12395CrossRefGoogle Scholar
  31. 31.
    Dahm R (2008) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 122:565–581PubMedCrossRefGoogle Scholar
  32. 32.
    Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wolf G (2003) Friedrich Miescher: the man who discovered DNA. Chem Herit 21(10–11):37–41Google Scholar
  34. 34.
    Levene PA (1919) Structure of yeast nucleic acid. J Biol Chem 40:415–424Google Scholar
  35. 35.
    Chargaff E (1950) Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia 6:201–209PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Goodsell DS (2004) The molecular perspective: DNA polymerase. Oncologist 9:108–109PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Manning GS, Ray J (1998) Counterion condensation revisited. J Biomol Struct Dyn 16:461–476PubMedCrossRefGoogle Scholar
  38. 38.
    Bloomfield VA, Crothers DM, Tinoco JI (2000) Nucleic acids: structures, properties, and functions. University Science Books, SausalitoGoogle Scholar
  39. 39.
    Saenger W (1984) Principle of nucleic acids structure. Springer, BerlinCrossRefGoogle Scholar
  40. 40.
    Rich A, Zhang S (2003) Z DNA: the long road to biological function. Nat Rev Genet 4:566–572PubMedCrossRefGoogle Scholar
  41. 41.
    Neidle S (2009) The structures of quadruplex nucleic acids and their drug complexes. Curr Opin Struct Biol 19:239–250PubMedCrossRefGoogle Scholar
  42. 42.
    Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexs in gene promoters: a novel anticancer strategy. Nat Rev Drug Discov 10:261–275PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Majhi B, Bhattacharyya S (2014) Advances in the molecular design of potential anticancer agents via targeting of human telomeric DNA. Chem Commun 50:6422–6438CrossRefGoogle Scholar
  44. 44.
    Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5:182–186PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Otting G, Liepinsh E, Wuthrich K (1991) Protein hydration in aqueous solution. Science 254:974–980PubMedCrossRefGoogle Scholar
  46. 46.
    Jimenez R, Fleming GR, Kumar PV, Maroncelli M (1994) Femtosecond solvation dynamics of water. Nature 369:471–473CrossRefGoogle Scholar
  47. 47.
    Bagchi B (2012) Molecular relaxation in liquids. Oxford University Press, New YorkGoogle Scholar
  48. 48.
    Kool ET (2002) Replacing the nucleobases in DNA with designer molecules. Acc Chem Res 35:936–943PubMedCrossRefGoogle Scholar
  49. 49.
    Law SM, Eritja R, Goodman MF, Breslauer KJ (1996) Spectroscopic and calorimetric characterizations of DNA duplexes containing 2-aminopurine. Biochemistry 35:12329–12337PubMedCrossRefGoogle Scholar
  50. 50.
    Pal SK, Zhao L, Xia T, Zewail AH (2003) Site- and sequence-selective ultrafast hydration of DNA. Proc Natl Acad Sci USA 100:13746–13751PubMedCrossRefGoogle Scholar
  51. 51.
    Coleman RS, Madaras ML (1998) Synthesis of a novel coumarin C-riboside as a photophysical probe of oligonucleotide dynamics. J Org Chem 63:5700–5703CrossRefGoogle Scholar
  52. 52.
    Dallmann A, Pfaffe M, Mügge C, Mahrwald R, Kovalenko SA, Ernsting NP (2009) Local THz time domain spectroscopy of duplex DNA via fluorescence of an embedded probe. J Phys Chem B 113:15619–15628PubMedCrossRefGoogle Scholar
  53. 53.
    Hawkins ME (2001) Fluorescent pteridine nucleoside analogs: a window on DNA interactions. Cell Biochem Biophys 34:257–281PubMedCrossRefGoogle Scholar
  54. 54.
    Weinberger M, Berndt F, Mahrwald R, Ernsting NP, Wagenknecht H-A (2013) Synthesis of 4-aminophthalimide and 2,4-diaminopyrimidine C-nucleosides as isosteric fluorescent DNA base substitutes. J Org Chem 78:2589–2599PubMedCrossRefGoogle Scholar
  55. 55.
    Larsen TA, Goodsell DS, Cascio D, Grzeskowiak K, Dickerson RE (1989) The structure of DAPI bound to DNA. J Biomol Struct Dyn 7:477–491PubMedCrossRefGoogle Scholar
  56. 56.
    Denham DA, Suswillo RR, Rogers R, McGreevy PB, Andrew BJ (1976) Studies on Brugia pahangi. 13. The anthelmintic effect of compounds F151 (Friedheim), HOE 33258 (Hoechst) and their reaction product. J Helminthol 50:243–250PubMedCrossRefGoogle Scholar
  57. 57.
    Breusegem SY, Clegg RM, Loontiens FG (2002) Base-sequence specificity of Hoechst 33258 and DAPI binding to five (A/T)4 DNA sites with kinetic evidence for more than one high-affinity Hoechst 33258-AATT complex. J Mol Biol 315:1049–1061PubMedCrossRefGoogle Scholar
  58. 58.
    Becker W (2005) Advanced time-correlated single photon counting techniques. Springer, BerlinCrossRefGoogle Scholar
  59. 59.
    Lakowicz JR (1975) Principles of fluorescence spectroscopy, 3rd edn. Springer, BerlinGoogle Scholar
  60. 60.
    Mahr H, Hirsch MD (1975) Optical up-conversion light gate with picosecond resolution. Opt Commun 13:96–99CrossRefGoogle Scholar
  61. 61.
    Shah J (1988) Ultrafast luminescence spectroscopy using sum frequency generation. IEEE J Quantum Electron 24:276–288CrossRefGoogle Scholar
  62. 62.
    Yasuda R, Harvey CD, Zhong H, Sobczyk A, van Aelst L, Svoboda K (2006) Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat Neurosci 9:283–291PubMedCrossRefGoogle Scholar
  63. 63.
    Ernesting NP, Kovalenko SA, Senyushkina T, Saam J, Farztdinov V (2001) Wave-packet-assisted decomposition of femtosecond transient ultraviolet−visible absorption spectra: application to excited-state intramolecular proton transfer in solution. J Phys Chem A 105:3443–3453CrossRefGoogle Scholar
  64. 64.
    Pal N, Verma SD, Sen S (2010) Probe position dependent of DNA dynamics: comparison of the time-resolved stokes shift of groove-bound to base-stacked probes. J Am Chem Soc 132:9277–9279PubMedCrossRefGoogle Scholar
  65. 65.
    Andreatta D, Sen S, Pérez Lustres JL, Kovalenko SA, Ernsting NP, Murphy CJ, Coleman RS, Berg MA (2006) Ultrafast dynamics in DNA: “fraying” at the end of the helix. J Am Chem Soc 128:6885–6892PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652PubMedCrossRefGoogle Scholar
  67. 67.
    Sen S, Andreatta D, Ponomarev SY, Beveridge DL, Berg MA (2009) Dynamics of water and ions near DNA: comparison of simulation to time-resolved stokes-shift experiments. J Am Chem Soc 131:724–1735CrossRefGoogle Scholar
  68. 68.
    Pal S, Maiti PK, Bagchi B, Hynes JT (2006) Multiple time scales in solvation dynamics of DNA in aqueous solution: the role of water, counterions, and cross-correlations. J Phys Chem B 110:26396–26402PubMedCrossRefGoogle Scholar
  69. 69.
    Furse KE, Corcelli SA (2008) The dynamics of water at DNA interfaces; computational studies of Hoechst 33258 bound to DNA. J Am Chem Soc 130:13103–13109PubMedCrossRefGoogle Scholar
  70. 70.
    Fennell CJ, Gezelter JD (2006) Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J Chem Phys 124:234104PubMedCrossRefGoogle Scholar
  71. 71.
    Maroncelli M (1991) Computer simulation of solvation dynamics in acetonitrile. J Chem Phys 94:2084–2103CrossRefGoogle Scholar
  72. 72.
    Castner EW, Maroncelli M, Fleming GR (1987) Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents. J Chem Phys 86:1090–1097CrossRefGoogle Scholar
  73. 73.
    Silva C, Walhout PK, Yokoyama K, Barbara PF (1998) Femtosecond solvation dynamics of hydrated electron. Phys Rev Lett 80:1086–1089CrossRefGoogle Scholar
  74. 74.
    Lang MJ, Jordanides XJ, Song X, Fleming GR (1999) Aqueous solvation dynamics studies by photon echo spectroscopy. J Chem Phys 110:5884–5892CrossRefGoogle Scholar
  75. 75.
    Furse KE, Lindquist BA, Corcelli SA (2008) Solvation dynamics of Hoechst 33258 in water: an equilibrium and nonequilibrium molecular dynamics study. J Phys Chem B 112:3231–3239PubMedCrossRefGoogle Scholar
  76. 76.
    Haerd T, Fan P, Madge D, Kearns DR (1989) On the flexibility of DNA: time resolved fluorescence polarization of intercalated quinacrine and 9-amino-6-chloro-2-methoxyacridine. J Phys Chem 93:4338–4345CrossRefGoogle Scholar
  77. 77.
    Brauns EB, Murphy CJ, Berg MA (1998) Local dynamics in DNA by temperature-dependent Stokes shift of an intercalated dye. J Am Chem Soc 120:2449–2456CrossRefGoogle Scholar
  78. 78.
    Brauns EB, Madaras ML, Coleman RS, Murphy CJ, Berg MA (1999) Measurement of local DNA reorganization on the picosecond and nanosecond time scales. J Am Chem Soc 121:11644–11649CrossRefGoogle Scholar
  79. 79.
    Brauns EB, Madaras ML, Coleman RS, Murphy CJ, Berg MA (2002) Complex local dynamics in DNA on the picosecond and nanosecond time scales. Phys Rev Lett 88:158101(1–4)Google Scholar
  80. 80.
    Somoza MM, Andreatta D, Murphy CJ, Coleman RS, Berg MA (2004) Effect of lesions on the dynamics of DNA on the picosecond and nanosecond timescales using a polarity sensitive probe. Nucleic Acids Res 32:2494–2507PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Pal SK, Zhao L, Zewail AH (2003) Water at DNA surfaces: ultrafast dynamics in minor groove recognition. Proc Natl Acad Sci USA 100:8113–8118PubMedCrossRefGoogle Scholar
  82. 82.
    Banerjee D, Pal SK (2008) Dynamics in the DNA recognition by DAPI: exploration of the various binding modes. J Phys Chem B 112:1016–1021PubMedCrossRefGoogle Scholar
  83. 83.
    Sen S, Gearheart LA, Rivers E, Liu H, Coleman RS, Murphy CJ, Berg MA (2006) Role of monovalent counterions in the ultrafast dynamics of DNA. J Phys Chem B 110:13248–13255PubMedCrossRefGoogle Scholar
  84. 84.
    Levitt M (1983) Computer simulation of DNA double helix dynamics. Cold Spring Harb Symp Quant Biol 47:251–262PubMedCrossRefGoogle Scholar
  85. 85.
    Tidor B, Irikura KK, Brooks BR, Karplus M (1983) Dynamics of DNA oligomers. J Biomol Struct Dyn 1:231–252PubMedCrossRefGoogle Scholar
  86. 86.
    Young MA, Ravishankar G, Beveridge DL (1997) A 5-ns molecular dynamics trajectory for B-DNA: analysis of structure, motions and solvation. Biophys J 73:2313–2336PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Makarov V, Feig M, Andrews BK, Pettitt BM (1998) Diffusion of solvent around biomolecular solutes: a molecular dynamics simulation study. Biophys J 75:150–158PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Duboué-Dijon E, Fogarty AC, Hynes JT, Laage D (2016) Dynamical disorder in the DNA hydration shell. J Am Chem Soc 138:7610–7620PubMedCrossRefGoogle Scholar
  89. 89.
    Ponomarev SY, Thayer KM, Beveridge DL (2004) Ion motions in molecular dynamics simulations on DNA. Proc Natl Acad Sci USA 101:14771–14775PubMedCrossRefGoogle Scholar
  90. 90.
    Furse KE, Corcelli SA (2010) Effects of an unnatural base pair replacement on the structure and dynamics of DNA and neighboring water and ions. J Phys Chem B 114:9934–9945PubMedCrossRefGoogle Scholar
  91. 91.
    Verma SD, Pal N, Singh MK, Sen S (2012) Probe position-dependent counterion dynamics in DNA: comparison of time-resolved Stokes shift of groove-bound to base-stacked probes in the presence of different monovalent counterions. J Phys Chem Lett 3:2621–2626PubMedCrossRefGoogle Scholar
  92. 92.
    Furse KE, Corcelli SA (2011) Dynamical signature of abasic damage in DNA. J Am Chem Soc 133:720–723PubMedCrossRefGoogle Scholar
  93. 93.
    Saha D, Supekar S, Mukherjee A (2015) Distribution of residence time of water around DNA base pairs: governing factors and the origin of heterogeneity. J Phys Chem B 119:11371–11381PubMedCrossRefGoogle Scholar
  94. 94.
    Verma SD, Pal N, Singh MK, Sen S (2015) Sequence-dependent solvation dynamics of minor-groove bound ligand inside duplex-DNA. J Phys Chem B 119:11019–11029PubMedCrossRefGoogle Scholar
  95. 95.
    Miller MC, Buscaglia R, Chaires JB, Lane AN, Trent JO (2010) Hydration is a major determinant of the G-quadruplex stability and conformation of the human telomere 3′ sequence of d(AG3(TTAG3)3). J Am Chem Soc 132:17105–17107PubMedCrossRefGoogle Scholar
  96. 96.
    Heddi B, Phan AT (2011) Structure of human telomeric DNA in crowded solution. J Am Chem Soc 133:9824–9833PubMedCrossRefGoogle Scholar
  97. 97.
    Chen Z, Zheng K, Hao Y, Tan Z (2009) Reduced or diminished stabilization of the telomere G-quadruplex and inhibition of telomerase by small chemical ligands under molecular crowding condition. J Am Chem Soc 131:10430–10438PubMedCrossRefGoogle Scholar
  98. 98.
    Pal N, Shweta H, Singh MK, Verma SD, Sen S (2015) Power-law solvation dynamics in G-quadruplex DNA: role of hydration dynamics on ligand solvation inside DNA. J Phys Chem Lett 6:1754–1760PubMedCrossRefGoogle Scholar
  99. 99.
    Singh MK, Shweta H, Sen S (2016) Dispersed dynamics of solvation in G-quadruplex DNA: comparison of dynamic Stokes shifts of probes in parallel and antiparallel quadruplex structures. Methods Appl Fluoresc 4:034009PubMedCrossRefGoogle Scholar
  100. 100.
    Yang J, Wang Y, Wang L, Zhong D (2017) Mapping hydration dynamics around a β-barrel protein. J Am Chem Soc 139:4399–4408PubMedCrossRefGoogle Scholar
  101. 101.
    Qin Y, Wang L, Zhong D (2016) Dynamics and mechanism of ultrafast water-protein interactions. Proc Natl Acad Sci USA 113:8424–8429PubMedCrossRefGoogle Scholar
  102. 102.
    Mol CD, Izumi T, Mitra S, Tainer JA (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature 403:451–456PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Him Shweta
    • 1
  • Nibedita Pal
    • 1
  • Moirangthem Kiran Singh
    • 1
  • Sachin Dev Verma
    • 1
  • Sobhan Sen
    • 1
    Email author
  1. 1.Spectroscopy Laboratory, School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations