• Zekâi ŞenEmail author
Part of the Advances in Science, Technology & Innovation book series (ASTI)


Hydrogeology is a branch of earth sciences that deals quantitatively and qualitatively with groundwater flow through porous, fractured, and karstic (solution cavity) geological formations.


  1. Barenblatt, G.I., Zheltov, I.P., and Kochina, I.N., (1960). Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks: Journal of Applied Mathematics, v. 24, 1286–1303.Google Scholar
  2. Bear, J., (1979). Hydraulics of groundwater: New York, McGrawHill, 567 pp.Google Scholar
  3. Carslaw, H.S., and Jaeger, J.C., (1947). Conduction of Heat in Solids. Oxford University Press, Oxford, UK.: 510 pp.Google Scholar
  4. Cooper, H.H. and Jacob, C.E., (1946). A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., Vol. 27:526–534.Google Scholar
  5. Darcy, H., (1856). Les Fontaines Publiques de la ville de Dijon. Dalmont, Paris.Google Scholar
  6. Fetter, C.W., (2001). Applied Hydrogeology. Prentice Hall, Upper Saddle River, NJ, 4th edition. ISBN 0-13-088239-9.Google Scholar
  7. Freeze, R.A., and Cherry, J.A., (1979). Groundwater: Englewood Cliffs, NJ., Prentice-Hall, 604 p.Google Scholar
  8. Freeze, R.A., and Cherry, J.A., (1984). Groundwater. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 604 p.Google Scholar
  9. Hantush, M.S. (1956). Analysis of data from pumping tests in leaky aquifers. Traps Am. Geophvs. Union 37 702–714.Google Scholar
  10. Kazemi, H., (1969). “A Pressure Transient analysis of Naturally Fractured Reservoirs”, Trans., AIME, 256, 451–461.Google Scholar
  11. Meinzer, O.E., (1920). Quantitative methods of estimating groundwater supplies. Bull. Geological Society of America 31: 329–338.Google Scholar
  12. Papadopulos, I.S., and Cooper, H.H., (1967). Drawdown in a well of large diameter, Water Resources Research, Vol. 3(1): 241–244.Google Scholar
  13. Sichard, W., (1927). Das Fassungsvermengen von bohrbrunnen und seine bedeutung für grossere abssenktiefen. Dissertation, Technische Hochschule, Berlin.Google Scholar
  14. Snow, D.T., (1965). A parallel plate model of fractured permeable media. PhD Thesis Univ. of Calif., Berkeley, USA.Google Scholar
  15. Şen, Z., (1985). Volumetric approach to type curves in leaky aquifers.. J. Hydraul. Div. ASCE, 115 (2), 193–209.Google Scholar
  16. Şen, Z., (1986a). Determination of aquifer parameters by the slope-matching method. Ground Water, Vol. 24(2):217–223.Google Scholar
  17. Şen, Z., (1986b). Aquifer test analysis in fractured rocks with linear flow pattern. Ground Water 24(1), 72–78.Google Scholar
  18. Şen, Z., (1995) Applied Hydrogeology for Scientists and Engineers. Taylor and Francis Group, RCR Publishers, Baco Raton, 496 pp.Google Scholar
  19. Şen, Z., (2015). Practical and Applied Hydrogeology. Elsevier Publishing Co., 406 pp.Google Scholar
  20. Theis, C. V., (1935). The relation between the lowering of the piezometric surface and the rate and 556 duration of discharge of a well using groundwater storage. Trans. Amer. Geophys. Union, 557 16(1):519–524.Google Scholar
  21. Walton, W.C., (1970). Groundwater resources evaluation. McGraw-Hill Book Co., New York.Google Scholar
  22. Warren, J.E., and Root, P.J., (1963). The Behavior of Naturally Fractured Reservoirs, Society of Petroleum Journal, 245–255.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Civil Engineering, Faculty of Engineering and Natural SciencesIstanbul Medipol UniversityBeykoz, IstanbulTurkey

Personalised recommendations