Advertisement

Coronal and Axial Alignment: The Effects of Malalignment

  • Luiz Felipe Ambra
  • Andreas H. Gomoll
  • Jack FarrEmail author
Chapter

Abstract

The knee joint, when properly aligned, can support several multiples of body weight during activity and do so reliably over a lifetime. When malaligned, however, the loads placed on the joint are improperly distributed and can lead to pain, debilitation, and premature degradation of the articular cartilage. The treatment of chondral defects, therefore, requires a thorough consideration of malalignment pathologies in all three primary planes: coronal, axial, and sagittal. Various radiographic, computed tomography (CT), and magnetic resonance imaging (MRI) views can be used to assess malalignment and plan corrective treatment whether in a staged setting or concomitantly with cartilage restoration. Accurate assessment and consideration of malalignment pathologies is essential to optimizing cartilage restoration outcomes.

Keywords

Alignment Varus Valgus Anteversion Torsion Morphology Cartilage restoration 

References

  1. 1.
    Hsu RW, Himeno S, Coventry MB, Chao EY. Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop Relat Res. 1990;255:215–27.Google Scholar
  2. 2.
    Tetsworth K, Paley D. Malalignment and degenerative arthropathy. Orthop Clin North Am. 1994;25(3):367–77.PubMedGoogle Scholar
  3. 3.
    McKellop HA, Llinás A, Sarmiento A. Effects of tibial malalignment on the knee and ankle. Orthop Clin North Am. 1994;25(3):415–23.PubMedGoogle Scholar
  4. 4.
    Sharma L, Chmiel JS, Almagor O, Felson D, Guermazi A, Roemer F, Lewis CE, Segal N, Torner J, Cooke TD, Hietpas J, Lynch J, Nevitt M. The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: the MOST study. Ann Rheum Dis. 2013;72(2):235–40.  https://doi.org/10.1136/annrheumdis-2011-201070.CrossRefPubMedGoogle Scholar
  5. 5.
    Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart DM. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum. 2009;61(4):459–67.  https://doi.org/10.1002/art.24336.CrossRefPubMedGoogle Scholar
  6. 6.
    Weinberg DS, Tucker BJ, Drain JP, Wang DM, Gilmore A, Liu RW. A cadaveric investigation into the demographic and bony alignment properties associated with osteoarthritis of the patellofemoral joint. Knee. 2016;23(3):350–6.  https://doi.org/10.1016/j.knee.2016.02.016.CrossRefPubMedGoogle Scholar
  7. 7.
    McWalter EJ, Cibere J, MacIntyre NJ, Nicolaou S, Schulzer M, Wilson DR. Relationship between varus-valgus alignment and patellar kinematics in individuals with knee osteoarthritis. J Bone Joint Surg Am. 2007;89(12):2723–31.  https://doi.org/10.2106/JBJS.F.01016.CrossRefPubMedGoogle Scholar
  8. 8.
    Schön SN, Afifi FK, Rasch H, Amsler F, Friederich NG, Arnold MP, Hirschmann MT. Assessment of in vivo loading history of the patellofemoral joint: a study combining patellar position, tilt, alignment and bone SPECT/CT. Knee Surg Sports Traumatol Arthrosc. 2013;22(12):3039–46.  https://doi.org/10.1007/s00167-013-2698-2.CrossRefPubMedGoogle Scholar
  9. 9.
    Cahue S, Dunlop D, Hayes K, Song J, Torres L, Sharma L. Varus-valgus alignment in the progression of patellofemoral osteoarthritis. Arthritis Rheum. 2004;50(7):2184–90.  https://doi.org/10.1002/art.20348.CrossRefPubMedGoogle Scholar
  10. 10.
    Ho CP, James EW, Surowiec RK, Gatlin CC, Ellman MB, Cram TR, Dornan GJ, LaPrade RF. Systematic technique-dependent differences in CT versus MRI measurement of the tibial tubercle-trochlear groove distance. Am J Sports Med. 2015;43(3):675–82.  https://doi.org/10.1177/0363546514563690.CrossRefPubMedGoogle Scholar
  11. 11.
    Dickschas J, Harrer J, Bayer T, Schwitulla J, Strecker W. Correlation of the tibial tuberosity–trochlear groove distance with the Q-angle. Knee Surg Sports Traumatol Arthrosc. 2016;24(3):915–20.  https://doi.org/10.1007/s00167-014-3426-2.CrossRefPubMedGoogle Scholar
  12. 12.
    Camp CL, Stuart MJ, Krych AJ, Levy BA, Bond JR, Collins MS, Dahm DL. CT and MRI measurements of tibial tubercle-trochlear groove distances are not equivalent in patients with patellar instability. Am J Sports Med. 2013;41(8):1835–40.  https://doi.org/10.1177/0363546513484895.CrossRefPubMedGoogle Scholar
  13. 13.
    Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19–26.CrossRefGoogle Scholar
  14. 14.
    Daynes J, Hinckel B, Farr J. Tibial tuberosity—posterior cruciate ligament distance. J Knee Surg. 2016;29(06):471–7.  https://doi.org/10.1055/s-0035-1564732.CrossRefPubMedGoogle Scholar
  15. 15.
    Seitlinger G, Scheurecker G, Hogler R, Labey L, Innocenti B, Hofmann S. Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med. 2012;40(5):1119–25.  https://doi.org/10.1177/0363546512438762.CrossRefPubMedGoogle Scholar
  16. 16.
    Tensho K, Akaoka Y, Shimodaira H, Takanashi S, Ikegami s KH, Saito N. What components comprise the measurement of the tibial tuberosity-trochlear groove distance in a patellar dislocation population? J Bone Joint Surg Am. 2015;97(17):1441–8.  https://doi.org/10.2106/JBJS.N.01313.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee TQ, Yang BY, Sandusky MD, McMahon PJ. The effects of tibial rotation on the patellofemoral joint: assessment of the changes in in situ strain in the peripatellar retinaculum and the patellofemoral contact pressures and areas. J Rehabil Res Dev. 2001;38(5):463–9.PubMedGoogle Scholar
  18. 18.
    Hefzy MS, Jackson WT, Saddemi SR. Effects of tibial rotations on patellar tracking and patello-femoral contact areas. J Biomed Eng. 1992;14(4):329–43.CrossRefGoogle Scholar
  19. 19.
    Lee TQ, Anzel SH, Bennett KA, Pang D, Kim WC. The influence of fixed rotational deformities of the femur on the patellofemoral contact pressures in human cadaver knees. Clin Orthop Relat Res. 1994;302:69–74.Google Scholar
  20. 20.
    van Kampen A, Huiskes R. The three-dimensional tracking pattern of the human patella. J Orthop Res. 1990;8(3):372–82.  https://doi.org/10.1002/jor.1100080309.CrossRefPubMedGoogle Scholar
  21. 21.
    Yoshioka Y, Cooke TDV. Femoral anteversion: assessment based on function axes. J Orthop Res. 1987;5(1):86–91.  https://doi.org/10.1002/jor.1100050111.CrossRefPubMedGoogle Scholar
  22. 22.
    Cooke TDV, Price N, Fisher B, Hedden D. The inwardly pointing knee. An unrecognized problem of external rotational malalignment. Clin Orthop Relat Res. 1990;260:56–60.  https://doi.org/10.1097/00003086-199011000-00011.CrossRefGoogle Scholar
  23. 23.
    Basaran SH, Ercin E, Bayrak A, Cumen H, Bilgili MG, Inci E, Avkan MC. The measurement of tibial torsion by magnetic resonance imaging in children: the comparison of three different methods. Eur J Orthop Surg Traumatol. 2015;25(8):1327–32.  https://doi.org/10.1007/s00590-015-1694-2.CrossRefPubMedGoogle Scholar
  24. 24.
    Folinais D, Thelen P, Delin C, Radier C, Catonne Y, Lazennec JY. Measuring femoral and rotational alignment: EOS system versus computed tomography. Orthop Traumatol Surg Res. 2013;99(5):509–16.  https://doi.org/10.1016/j.otsr.2012.12.023.CrossRefPubMedGoogle Scholar
  25. 25.
    Reikerås O, Høiseth A. Torsion of the leg determined by computed tomography. Acta Orthop Scand. 1989;60(3):330–3.CrossRefGoogle Scholar
  26. 26.
    Fujikawa K, Seedhom BB, Wright V. Biomechanics of the patello-femoral joint. Part I: a study of the contact and the congruity of the patello-femoral compartment and movement of the patella. Eng Med. 1983;12(1):3–11.CrossRefGoogle Scholar
  27. 27.
    Takai S, Sakakida K, Yamashita F, Suzu F, Izuta F. Rotational alignment of the lower limb in osteoarthritis of the knee. Int Orthop. 1985;9(3):209–15.CrossRefGoogle Scholar
  28. 28.
    Lerat JL, Moyen B, Bochu M, Galland O. Femoropatellar pathology and rotational and torsional abnormalities of the inferior limbs: the use of CT scan. In: Müller W, Hackenbruch W, editors. Surgery and arthroscopy of the knee. Berlin: Springer; 1988. p. 61–5.  https://doi.org/10.1007/978-3-642-72782-5_11.CrossRefGoogle Scholar
  29. 29.
    Lee PP, Chalian M, Carrino JA, Eng J, Chhabra A. Multimodality correlations of patellar height measurement on X-ray, CT, and MRI. Skelet Radiol. 2012;41(10):1309–14.  https://doi.org/10.1007/s00256-012-1396-3.CrossRefGoogle Scholar
  30. 30.
    Mehl J, Feucht MJ, Bode G, Dovi-Akue D, Südkamp NP, Niemeyer P. Association between patellar cartilage defects and patellofemoral geometry: a matched-pair MRI comparison of patients with and without isolated patellar cartilage defects. Knee Surg Sports Traumatol Arthrosc. 2016;24(3):838–46.  https://doi.org/10.1007/s00167-014-3385-7.CrossRefPubMedGoogle Scholar
  31. 31.
    Kalichman L, Zhang Y, Niu J, Goggins J, Gale D, Felson DT, Hunter D. The association between patellar alignment and patellofemoral joint osteoarthritis features an MRI study. Rheumatology. 2007;46(8):1303–8.  https://doi.org/10.1093/rheumatology/kem095.CrossRefPubMedGoogle Scholar
  32. 32.
    Ali SA, Helmer R, Terk MR. Analysis of the patellofemoral region on MRI: association of abnormal trochlear morphology with severe cartilage defects. AJR Am J Roentgenol. 2010;194(3):721–7.  https://doi.org/10.2214/AJR.09.3008.CrossRefPubMedGoogle Scholar
  33. 33.
    Tsavalas N, Katonis P, Karantanas AH. Knee joint anterior malalignment and patellofemoral osteoarthritis: an MRI study. Eur Radiol. 2012;22(2):418–28.  https://doi.org/10.1007/s00330-011-2275-3.CrossRefPubMedGoogle Scholar
  34. 34.
    Salzmann GM, Weber TS, Spang JT, Imhoff AB, Schöttle PB. Comparison of native axial radiographs with axial MR imaging for determination of the trochlear morphology in patients with trochlear dysplasia. Arch Orthop Trauma Surg. 2009;130(3):335–40.  https://doi.org/10.1007/s00402-009-0912-y.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luiz Felipe Ambra
    • 1
  • Andreas H. Gomoll
    • 2
  • Jack Farr
    • 3
    Email author
  1. 1.Department of Orthopedic and TraumatologyUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Department of Orthopedic SurgeryHospital for Special SurgeryNew YorkUSA
  3. 3.Cartilage Restoration Center, OrthoIndy HospitalIndianapolisUSA

Personalised recommendations