Advertisement

Emerging Technologies in Cartilage Restoration

  • Andrew J. RiffEmail author
  • Annabelle Davey
  • Brian J. Cole
Chapter

Abstract

With the rising prevalence of obesity and injuries in sports, the treatment of articular cartilage is becoming increasingly important. The past two decades have brought about incredible advancements in the surgical intervention regarding cartilage injury including techniques such as osteochondral grafting, marrow stimulation, and autologous chondrocyte implantation. Techniques that have generated excitement include augmented microfracture, matrix-assisted ACI, matrix plus stem cell productions, minced cartilage productions, off-the-shelf osteochondral implants, and injectable agents. While these products have demonstrated promising clinical and histologic results, many remain unavailable in the United States due to FDA restrictions. More investigation is needed with clinical trials and research in order to establish these novel techniques as augmentations or stand-alone treatments within the cartilage restoration algorithm.

Keywords

Cartilage restoration Techniques Cartilage defect Lesion Treatment 

References

  1. 1.
    Devitt BM, Bell SW, Webster KE, Feller JA. Surgical treatments of cartilage defects of the knee: systematic review of randomised controlled trials. Knee. 2017;24:508–17.CrossRefGoogle Scholar
  2. 2.
    Cole BJ, Kercher JS, Strauss EJ, Barker JU. Augmentation strategies following the microfracture technique for repair of focal chondral defects. Cartilage. 2010;1:145–52.CrossRefGoogle Scholar
  3. 3.
    Benthien JP, Behrens P. Autologous Matrix-Induced Chondrogenesis (AMIC). Cartilage. 2010;1:65–8.CrossRefGoogle Scholar
  4. 4.
    Piontek T, Ciemniewska-Gorzela K, Szulc A. All-arthroscopic AMIC procedure for repair of cartilage defects of the knee. Knee Surg. 2012;20:922–5.CrossRefGoogle Scholar
  5. 5.
    Schiavone Panni A, Del Regno C, Mazzitelli G. Good clinical results with autologous matrix-induced chondrogenesis (Amic) technique in large knee chondral defects. Knee Surg. 2017;26:1130–6.Google Scholar
  6. 6.
    Shive MS, Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, Méthot S, Vehik K, Restrepo A. BST-CarGel® treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage. 2015;6:62–72.CrossRefGoogle Scholar
  7. 7.
    Trattnig S, Ohel K, Mlynarik V, Juras V, Zbyn S. Morphological and compositional monitoring of a new cell-free cartilage repair hydrogel technology–GelrinC by MR using semi-quantitative MOCART scoring and quantitative T2 index and new zonal T2 index calculation. Osteoarthr Cartil. 2015;23:2224–32.CrossRefGoogle Scholar
  8. 8.
    Fortier LA, Chapman HS, Pownder SL, Roller BL, Cross JA, Cook JL, Cole BJ. BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med. 2016;44:2366–74.CrossRefGoogle Scholar
  9. 9.
    Siclari A, Mascaro G, Gentili C, Kaps C, Cancedda R, Boux E. Cartilage repair in the knee with subchondral drilling augmented with a platelet-rich plasma-immersed polymer-based implant. Knee Surg Sports Traumatol Arthrosc. 2013;22:1225–34.CrossRefGoogle Scholar
  10. 10.
    Bryan W. Approval letter for biologics lincense application for autologous cultured chondrocytes on porcine collagen membrane. U.S. Food & Drug Administration. December 13, 2016.Google Scholar
  11. 11.
    Brix MO, Stelzeneder D, Chiari C, Koller U, Nehrer S, Dorotka R, Windhager R, Domayer SE. Treatment of full-thickness chondral defects with hyalograft C in the knee: long-term results. Am J Sports Med. 2014;42:1426–32.CrossRefGoogle Scholar
  12. 12.
    Wylie JD, Hartley MK, Kapron AL, Aoki SK, Maak TG. What is the effect of matrices on cartilage repair? A systematic review. Clin Orthop Relat Res. 2015;473:1673–82.CrossRefGoogle Scholar
  13. 13.
    Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Löer I, Barthel T, Rudert M, Nöth U. A prospective multicenter study on the outcome of type I collagen hydrogel–based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med. 2011;39:2558–65.CrossRefGoogle Scholar
  14. 14.
    Zak L, Albrecht C, Wondrasch B, Widhalm H, Vekszler G, Trattnig S, Marlovits S, Aldrian S. Results 2 years after matrix-associated autologous chondrocyte transplantation using the Novocart 3D scaffold. Am J Sports Med. 2014;42:1618–27.CrossRefGoogle Scholar
  15. 15.
    Kusanagi A, Mascarenhas AC, Blahut EB, Johnson JM, Murata T, Mizuno S. Hydrostatic pressure with low oxygen stimulates extracellular matrix accumulation by human articular chondrocytes in a 3-D collagen sponge. 51st Annual Meeting of the Orthopedic Research Society, Washington, DC, 384; 2005.Google Scholar
  16. 16.
    Kusanagi A, Mascarenhas AC, Blahut EB, Johnson JM. Hydrostatic pressure with low oxygen stimulates extracellular matrix accumulation by human articular chondrocytes in a 3-D collagen gel/sponge. Transactions of the 51st Annual Orthopaedic Research Society. 2005. p. 20–3Google Scholar
  17. 17.
    Crawford DC, DeBerardino TM, Williams RJ III. NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions. J Bone Joint Surg Am. 2012;94:979–89.CrossRefGoogle Scholar
  18. 18.
    Yayon A, Neria E, Blumenstein S, Stern B, Barkai H, Zak R, et al. BIOCART™II a novel implant for 3D reconstruction of articular cartilage. J Bone Joint Surg Br Vol. 2006;88-B(SUPP II):344.Google Scholar
  19. 19.
    Domayer SE, Welsch GH, Nehrer S, Chiari C, Dorotka R, Szomolanyi P, Mamisch TC, Yayon A, Trattnig S. T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: preliminary results. Eur J Radiol. 2010;73:636–42.CrossRefGoogle Scholar
  20. 20.
    Sampson S, Bemden AB-V, Aufiero D. Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. Phys Sportsmed. 2013;41:7–18.CrossRefGoogle Scholar
  21. 21.
    Bain BJ. The bone marrow aspirate of healthy subjects. Br J Haematol. 1996;94:206–9.CrossRefGoogle Scholar
  22. 22.
    Cassano JM, Kennedy JG, Ross KA, Fraser EJ. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg. 2016;26:333–42.CrossRefGoogle Scholar
  23. 23.
    Kim M, Kim J, Lim J, Kim Y, Han K. Use of an automated hematology analyzer and flow cytometry to assess bone marrow cellularity and differential cell count. Ann Clin Lab Sci. 2004;34:307–13.PubMedGoogle Scholar
  24. 24.
    Yamamura R, Yamane T, Hino M, Ohta K, Shibata H, Tsuda I, Tatsumi N. Possible automatic cell classification of bone marrow aspirate using the CELL-DYN 4000 automatic blood cell analyzer. J Clin Lab Anal. 2002;16:86–90.CrossRefGoogle Scholar
  25. 25.
    Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid–based scaffold with activated bone marrow–derived mesenchymal stem cells compared with microfracture. Am J Sports Med. 2016;44:2846–54.CrossRefGoogle Scholar
  26. 26.
    Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc. 2017;25:2494–501.CrossRefGoogle Scholar
  27. 27.
    Calabrese G et al. Combination of collagen-based scaffold and bioactive factors induces adipose-derived mesenchymal stem cells chondrogenic differentiation in vitro. Front Physiol. 2017.  https://doi.org/10.3389/fphys.2017.00050.
  28. 28.
    Park YB, Ha CW, Lee CH, Yoon YC, Park YG. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood‐derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof‐of‐concept with 7 years of extended follow‐up. Stem Cells Transl Med. 2017;6:613–21.CrossRefGoogle Scholar
  29. 29.
    Yanke AB, Tilton AK, Wetters NG, Merkow DB, Cole BJ. DeNovo NT particulated juvenile cartilage implant. Sports Med Arthrosc Rev. 2015;23:125–9.CrossRefGoogle Scholar
  30. 30.
    Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39:1170–9.CrossRefGoogle Scholar
  31. 31.
    Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG. Outcomes after a single-stage procedure for cell-based cartilage repair. Am J Sports Med. 2011;39:1170–9.CrossRefGoogle Scholar
  32. 32.
    Riboh JC, Cole BJ, Farr J. Particulated articular cartilage for symptomatic chondral defects of the knee. Curr Rev Musculoskelet Med. 2015;8:429–35.CrossRefGoogle Scholar
  33. 33.
    Farr J, Yao JQ. Chondral defect repair with particulated juvenile cartilage allograft. Cartilage. 2011;2:346–53.CrossRefGoogle Scholar
  34. 34.
    Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med. 2014;42:1417–25.CrossRefGoogle Scholar
  35. 35.
    Buckwalter JA, Bowman GN. Clinical outcomes of patellar chondral lesions treated with juvenile particulated cartilage allografts. Iowa Orthop J. 2014;34:44–9.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Wu L, Leijten JCH, Georgi N, Post JN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A. 2011;17:1425–36.CrossRefGoogle Scholar
  37. 37.
    Gracitelli GC, Meric G, Pulido PA, Gortz S, De Young AJ, Bugbee WD. Fresh osteochondral allograft transplantation for isolated patellar cartilage injury. Am J Sports Med. 2015;43:879–84.CrossRefGoogle Scholar
  38. 38.
    Levy YD, Gortz S, Pulido PA, McCauley JC, Bugbee WD. Do fresh osteochondral allografts successfully treat femoral condyle lesions? Clin Orthop Relat Res. 2013;471:231–7.CrossRefGoogle Scholar
  39. 39.
    Farr J, Gracitelli G, Gomoll AH. Decellularized osteochondral allograft for the treatment of cartilage lesions in the knee. Orthop J Sports Med. 2015;3(7).CrossRefGoogle Scholar
  40. 40.
    Geraghty S, Kuang J-Q, Yoo D, LeRoux-Williams M, Vangsness CT, Danilkovitch A. A novel, cryopreserved, viable osteochondral allograft designed to augment marrow stimulation for articular cartilage repair. J Orthop Surg Res. 2015;10:66.CrossRefGoogle Scholar
  41. 41.
    Kon E, Mutini A, Arcangeli E, Delcogliano M, Filardo G, Nicoli Aldini N, Pressato D, Quarto R, Zaffagnini S, Marcacci M. Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J Tissue Eng Regen Med. 2010;4:300–8.CrossRefGoogle Scholar
  42. 42.
    Berruto M, Ferrua P, Uboldi F, Pasqualotto S, Ferrara F, Carimati G, Usellini E, Delcogliano M. Can a biomimetic osteochondral scaffold be a reliable alternative to prosthetic surgery in treating late-stage SPONK? Knee. 2016;23:936–41.CrossRefGoogle Scholar
  43. 43.
    Kon E, Robinson D, Verdonk P, Drobnic M, et al. A novel aragonite-based scaffold for osteochondral regeneration: early experience on human implants and technical developments. Injury. 2016;47:S27–32.CrossRefGoogle Scholar
  44. 44.
    Kon E, Filardo G, Shani J, Altschuler N, Levy A, Zaslav K, Eisman JE, Robinson D. Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg Res. 2015;10:81.CrossRefGoogle Scholar
  45. 45.
    Fortier LA, Chapman HS, Pownder SL, Roller BL, Cross JA, Cook JL, Cole BJ. BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Curr Rev Musculoskelet Med. 2015;44:2366–74.Google Scholar
  46. 46.
    Baltzer AW, Moser C, Jansen SA, Krauspe R. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthr Cartil. 2009;17:152–60.CrossRefGoogle Scholar
  47. 47.
    Cole BJ, Karas V, Hussey K, Pilz K, Fortier LA. Hyaluronic acid versus platelet-rich plasma. Am J Sports Med. 2017;45:339–46.CrossRefGoogle Scholar
  48. 48.
    Laver L, Marom N, Dnyanesh L, Mei-Dan O, Espregueira-Mendes JO, Gobbi A. PRP for degenerative cartilage disease. Cartilage. 2016;8:194760351667070.Google Scholar
  49. 49.
    Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee. Orthop J Sports Med. 2016;4:232596711562548.CrossRefGoogle Scholar
  50. 50.
    Striano RD, Battista V, Bilboo N. Non-responding knee pain with osteoarthritis, meniscus and ligament tears treated with ultrasound guided autologous, micro-fragmented and minimally manipulated adipose tissue. Open J Regen Med. 2017;6:17.CrossRefGoogle Scholar
  51. 51.
    Franceschini M, Castellaneta C, Mineo G. Injection of autologous micro-fragmented adipose tissue for the treatment of post traumatic degenerative lesion of knee cartilage: a case report. CellR4. 2016;4:e1765.Google Scholar
  52. 52.
    Reich CM, Raabe O, Wenisch S, Bridger PS. Isolation, culture and chondrogenic differentiation of canine adipose tissue-and bone marrow-derived mesenchymal stem cells–a comparative study. Vet Res Commun. 2012;36:139–48.CrossRefGoogle Scholar
  53. 53.
    Jakobsen RB, Shahdadfar A, Reinholt FP, Brinchmann JE. Chondrogenesis in a hyaluronic acid scaffold: comparison between chondrocytes and MSC from bone marrow and adipose tissue. Knee Surg Sports Traumatol Arthrosc. 2010;18:1407–16.CrossRefGoogle Scholar
  54. 54.
    Hunter DJ, Pike MC, Jonas BL, Kissin E, Krop J, McAlindon T. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet Disord. 2010;11:232.CrossRefGoogle Scholar
  55. 55.
    Ellsworth JL, Berry J, Bukowski T, et al. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthr Cartil. 2002;10:308–20.CrossRefGoogle Scholar
  56. 56.
    Lohmander LS, Hellot S, Dreher D, Krantz EFW, Kruger DS, Guermazi A, Eckstein F. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2014;66:1820–31.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrew J. Riff
    • 1
    Email author
  • Annabelle Davey
    • 2
  • Brian J. Cole
    • 3
  1. 1.IU Health Physicians Orthopedics & Sports MedicineIndianapolisUSA
  2. 2.University of Vermont, College of MedicineBurlingtonUSA
  3. 3.Department of Orthopedic SurgeryRush University Medical CenterChicagoUSA

Personalised recommendations