Joint Preservation of the Knee pp 295-319 | Cite as
Emerging Technologies in Cartilage Restoration
Abstract
With the rising prevalence of obesity and injuries in sports, the treatment of articular cartilage is becoming increasingly important. The past two decades have brought about incredible advancements in the surgical intervention regarding cartilage injury including techniques such as osteochondral grafting, marrow stimulation, and autologous chondrocyte implantation. Techniques that have generated excitement include augmented microfracture, matrix-assisted ACI, matrix plus stem cell productions, minced cartilage productions, off-the-shelf osteochondral implants, and injectable agents. While these products have demonstrated promising clinical and histologic results, many remain unavailable in the United States due to FDA restrictions. More investigation is needed with clinical trials and research in order to establish these novel techniques as augmentations or stand-alone treatments within the cartilage restoration algorithm.
Keywords
Cartilage restoration Techniques Cartilage defect Lesion TreatmentReferences
- 1.Devitt BM, Bell SW, Webster KE, Feller JA. Surgical treatments of cartilage defects of the knee: systematic review of randomised controlled trials. Knee. 2017;24:508–17.PubMedCrossRefGoogle Scholar
- 2.Cole BJ, Kercher JS, Strauss EJ, Barker JU. Augmentation strategies following the microfracture technique for repair of focal chondral defects. Cartilage. 2010;1:145–52.PubMedPubMedCentralCrossRefGoogle Scholar
- 3.Benthien JP, Behrens P. Autologous Matrix-Induced Chondrogenesis (AMIC). Cartilage. 2010;1:65–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 4.Piontek T, Ciemniewska-Gorzela K, Szulc A. All-arthroscopic AMIC procedure for repair of cartilage defects of the knee. Knee Surg. 2012;20:922–5.CrossRefGoogle Scholar
- 5.Schiavone Panni A, Del Regno C, Mazzitelli G. Good clinical results with autologous matrix-induced chondrogenesis (Amic) technique in large knee chondral defects. Knee Surg. 2017;26:1130–6.Google Scholar
- 6.Shive MS, Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, Méthot S, Vehik K, Restrepo A. BST-CarGel® treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage. 2015;6:62–72.PubMedPubMedCentralCrossRefGoogle Scholar
- 7.Trattnig S, Ohel K, Mlynarik V, Juras V, Zbyn S. Morphological and compositional monitoring of a new cell-free cartilage repair hydrogel technology–GelrinC by MR using semi-quantitative MOCART scoring and quantitative T2 index and new zonal T2 index calculation. Osteoarthr Cartil. 2015;23:2224–32.PubMedCrossRefGoogle Scholar
- 8.Fortier LA, Chapman HS, Pownder SL, Roller BL, Cross JA, Cook JL, Cole BJ. BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med. 2016;44:2366–74.PubMedPubMedCentralCrossRefGoogle Scholar
- 9.Siclari A, Mascaro G, Gentili C, Kaps C, Cancedda R, Boux E. Cartilage repair in the knee with subchondral drilling augmented with a platelet-rich plasma-immersed polymer-based implant. Knee Surg Sports Traumatol Arthrosc. 2013;22:1225–34.PubMedCrossRefGoogle Scholar
- 10.Bryan W. Approval letter for biologics lincense application for autologous cultured chondrocytes on porcine collagen membrane. U.S. Food & Drug Administration. December 13, 2016.Google Scholar
- 11.Brix MO, Stelzeneder D, Chiari C, Koller U, Nehrer S, Dorotka R, Windhager R, Domayer SE. Treatment of full-thickness chondral defects with hyalograft C in the knee: long-term results. Am J Sports Med. 2014;42:1426–32.PubMedCrossRefGoogle Scholar
- 12.Wylie JD, Hartley MK, Kapron AL, Aoki SK, Maak TG. What is the effect of matrices on cartilage repair? A systematic review. Clin Orthop Relat Res. 2015;473:1673–82.PubMedPubMedCentralCrossRefGoogle Scholar
- 13.Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Löer I, Barthel T, Rudert M, Nöth U. A prospective multicenter study on the outcome of type I collagen hydrogel–based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med. 2011;39:2558–65.PubMedCrossRefGoogle Scholar
- 14.Zak L, Albrecht C, Wondrasch B, Widhalm H, Vekszler G, Trattnig S, Marlovits S, Aldrian S. Results 2 years after matrix-associated autologous chondrocyte transplantation using the Novocart 3D scaffold. Am J Sports Med. 2014;42:1618–27.PubMedCrossRefGoogle Scholar
- 15.Kusanagi A, Mascarenhas AC, Blahut EB, Johnson JM, Murata T, Mizuno S. Hydrostatic pressure with low oxygen stimulates extracellular matrix accumulation by human articular chondrocytes in a 3-D collagen sponge. 51st Annual Meeting of the Orthopedic Research Society, Washington, DC, 384; 2005.Google Scholar
- 16.Kusanagi A, Mascarenhas AC, Blahut EB, Johnson JM. Hydrostatic pressure with low oxygen stimulates extracellular matrix accumulation by human articular chondrocytes in a 3-D collagen gel/sponge. Transactions of the 51st Annual Orthopaedic Research Society. 2005. p. 20–3Google Scholar
- 17.Crawford DC, DeBerardino TM, Williams RJ III. NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions. J Bone Joint Surg Am. 2012;94:979–89.PubMedPubMedCentralCrossRefGoogle Scholar
- 18.Yayon A, Neria E, Blumenstein S, Stern B, Barkai H, Zak R, et al. BIOCART™II a novel implant for 3D reconstruction of articular cartilage. J Bone Joint Surg Br Vol. 2006;88-B(SUPP II):344.Google Scholar
- 19.Domayer SE, Welsch GH, Nehrer S, Chiari C, Dorotka R, Szomolanyi P, Mamisch TC, Yayon A, Trattnig S. T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: preliminary results. Eur J Radiol. 2010;73:636–42.PubMedCrossRefGoogle Scholar
- 20.Sampson S, Bemden AB-V, Aufiero D. Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. Phys Sportsmed. 2013;41:7–18.PubMedCrossRefGoogle Scholar
- 21.Bain BJ. The bone marrow aspirate of healthy subjects. Br J Haematol. 1996;94:206–9.PubMedCrossRefGoogle Scholar
- 22.Cassano JM, Kennedy JG, Ross KA, Fraser EJ. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg. 2016;26:333–42.CrossRefGoogle Scholar
- 23.Kim M, Kim J, Lim J, Kim Y, Han K. Use of an automated hematology analyzer and flow cytometry to assess bone marrow cellularity and differential cell count. Ann Clin Lab Sci. 2004;34:307–13.PubMedGoogle Scholar
- 24.Yamamura R, Yamane T, Hino M, Ohta K, Shibata H, Tsuda I, Tatsumi N. Possible automatic cell classification of bone marrow aspirate using the CELL-DYN 4000 automatic blood cell analyzer. J Clin Lab Anal. 2002;16:86–90.PubMedCrossRefGoogle Scholar
- 25.Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid–based scaffold with activated bone marrow–derived mesenchymal stem cells compared with microfracture. Am J Sports Med. 2016;44:2846–54.PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc. 2017;25:2494–501.PubMedCrossRefGoogle Scholar
- 27.Calabrese G et al. Combination of collagen-based scaffold and bioactive factors induces adipose-derived mesenchymal stem cells chondrogenic differentiation in vitro. Front Physiol. 2017. https://doi.org/10.3389/fphys.2017.00050.
- 28.Park YB, Ha CW, Lee CH, Yoon YC, Park YG. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood‐derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof‐of‐concept with 7 years of extended follow‐up. Stem Cells Transl Med. 2017;6:613–21.PubMedCrossRefGoogle Scholar
- 29.Yanke AB, Tilton AK, Wetters NG, Merkow DB, Cole BJ. DeNovo NT particulated juvenile cartilage implant. Sports Med Arthrosc Rev. 2015;23:125–9.PubMedCrossRefGoogle Scholar
- 30.Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39:1170–9.PubMedCrossRefGoogle Scholar
- 31.Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG. Outcomes after a single-stage procedure for cell-based cartilage repair. Am J Sports Med. 2011;39:1170–9.PubMedCrossRefGoogle Scholar
- 32.Riboh JC, Cole BJ, Farr J. Particulated articular cartilage for symptomatic chondral defects of the knee. Curr Rev Musculoskelet Med. 2015;8:429–35.PubMedPubMedCentralCrossRefGoogle Scholar
- 33.Farr J, Yao JQ. Chondral defect repair with particulated juvenile cartilage allograft. Cartilage. 2011;2:346–53.PubMedPubMedCentralCrossRefGoogle Scholar
- 34.Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med. 2014;42:1417–25.PubMedCrossRefGoogle Scholar
- 35.Buckwalter JA, Bowman GN. Clinical outcomes of patellar chondral lesions treated with juvenile particulated cartilage allografts. Iowa Orthop J. 2014;34:44–9.PubMedPubMedCentralGoogle Scholar
- 36.Wu L, Leijten JCH, Georgi N, Post JN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A. 2011;17:1425–36.PubMedCrossRefGoogle Scholar
- 37.Gracitelli GC, Meric G, Pulido PA, Gortz S, De Young AJ, Bugbee WD. Fresh osteochondral allograft transplantation for isolated patellar cartilage injury. Am J Sports Med. 2015;43:879–84.PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Levy YD, Gortz S, Pulido PA, McCauley JC, Bugbee WD. Do fresh osteochondral allografts successfully treat femoral condyle lesions? Clin Orthop Relat Res. 2013;471:231–7.PubMedCrossRefGoogle Scholar
- 39.Farr J, Gracitelli G, Gomoll AH. Decellularized osteochondral allograft for the treatment of cartilage lesions in the knee. Orthop J Sports Med. 2015;3(7).CrossRefGoogle Scholar
- 40.Geraghty S, Kuang J-Q, Yoo D, LeRoux-Williams M, Vangsness CT, Danilkovitch A. A novel, cryopreserved, viable osteochondral allograft designed to augment marrow stimulation for articular cartilage repair. J Orthop Surg Res. 2015;10:66.PubMedPubMedCentralCrossRefGoogle Scholar
- 41.Kon E, Mutini A, Arcangeli E, Delcogliano M, Filardo G, Nicoli Aldini N, Pressato D, Quarto R, Zaffagnini S, Marcacci M. Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J Tissue Eng Regen Med. 2010;4:300–8.CrossRefGoogle Scholar
- 42.Berruto M, Ferrua P, Uboldi F, Pasqualotto S, Ferrara F, Carimati G, Usellini E, Delcogliano M. Can a biomimetic osteochondral scaffold be a reliable alternative to prosthetic surgery in treating late-stage SPONK? Knee. 2016;23:936–41.PubMedCrossRefGoogle Scholar
- 43.Kon E, Robinson D, Verdonk P, Drobnic M, et al. A novel aragonite-based scaffold for osteochondral regeneration: early experience on human implants and technical developments. Injury. 2016;47:S27–32.CrossRefGoogle Scholar
- 44.Kon E, Filardo G, Shani J, Altschuler N, Levy A, Zaslav K, Eisman JE, Robinson D. Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg Res. 2015;10:81.PubMedPubMedCentralCrossRefGoogle Scholar
- 45.Fortier LA, Chapman HS, Pownder SL, Roller BL, Cross JA, Cook JL, Cole BJ. BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Curr Rev Musculoskelet Med. 2015;44:2366–74.Google Scholar
- 46.Baltzer AW, Moser C, Jansen SA, Krauspe R. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthr Cartil. 2009;17:152–60.PubMedCrossRefGoogle Scholar
- 47.Cole BJ, Karas V, Hussey K, Pilz K, Fortier LA. Hyaluronic acid versus platelet-rich plasma. Am J Sports Med. 2017;45:339–46.PubMedCrossRefGoogle Scholar
- 48.Laver L, Marom N, Dnyanesh L, Mei-Dan O, Espregueira-Mendes JO, Gobbi A. PRP for degenerative cartilage disease. Cartilage. 2016;8:194760351667070.Google Scholar
- 49.Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee. Orthop J Sports Med. 2016;4:232596711562548.CrossRefGoogle Scholar
- 50.Striano RD, Battista V, Bilboo N. Non-responding knee pain with osteoarthritis, meniscus and ligament tears treated with ultrasound guided autologous, micro-fragmented and minimally manipulated adipose tissue. Open J Regen Med. 2017;6:17.CrossRefGoogle Scholar
- 51.Franceschini M, Castellaneta C, Mineo G. Injection of autologous micro-fragmented adipose tissue for the treatment of post traumatic degenerative lesion of knee cartilage: a case report. CellR4. 2016;4:e1765.Google Scholar
- 52.Reich CM, Raabe O, Wenisch S, Bridger PS. Isolation, culture and chondrogenic differentiation of canine adipose tissue-and bone marrow-derived mesenchymal stem cells–a comparative study. Vet Res Commun. 2012;36:139–48.PubMedCrossRefGoogle Scholar
- 53.Jakobsen RB, Shahdadfar A, Reinholt FP, Brinchmann JE. Chondrogenesis in a hyaluronic acid scaffold: comparison between chondrocytes and MSC from bone marrow and adipose tissue. Knee Surg Sports Traumatol Arthrosc. 2010;18:1407–16.PubMedCrossRefGoogle Scholar
- 54.Hunter DJ, Pike MC, Jonas BL, Kissin E, Krop J, McAlindon T. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet Disord. 2010;11:232.PubMedPubMedCentralCrossRefGoogle Scholar
- 55.Ellsworth JL, Berry J, Bukowski T, et al. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthr Cartil. 2002;10:308–20.PubMedCrossRefGoogle Scholar
- 56.Lohmander LS, Hellot S, Dreher D, Krantz EFW, Kruger DS, Guermazi A, Eckstein F. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2014;66:1820–31.CrossRefGoogle Scholar