Articular Cartilage: Structure and Restoration

  • Charles A. Baumann
  • Betina B. Hinckel
  • Chantelle C. Bozynski
  • Jack FarrEmail author


Articular cartilage is composed of hyaline cartilage which functions to minimize friction between the articulations of synovial joints and act as a shock absorber of the daily loads applied to the joints: both of these serve to protect the underlying bone. Injuries to articular cartilage and associated subchondral bone are some of the most commonly encountered disorders in the field of orthopedics. It is critical to understand the normal function and structure of articular cartilage/bone composite to further understand and treat the debilitating diseases associated with this tissue within the knee organ.


Articular cartilage Chondrocyte Extracellular matrix Structure Restoration Osteochondral unit 


  1. 1.
    Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456–60.CrossRefGoogle Scholar
  2. 2.
    Alford JW, Cole BJ. Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options. Am J Sports Med. 2005;33(2):295–306.PubMedCrossRefGoogle Scholar
  3. 3.
    Loeser RF. Age-related changes in the musculoskeletal system and the development of osteoarthritis. Clin Geriatr Med. 2010;26(3):371–86.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Jeffries MA, Donica M, Baker LW, Stevenson ME, Annan AC, Humphrey MB. Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic cartilage. Arthritis Rheumatol. 2014;66(10):2804–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Pop T, Szczygielska D, Drubicki M. Epidemiology and cost of conservative treatment of patients with degenerative joint disease of the knee and hip. Ortopedia Traumatologia Rehabilitacja. 2007;9(4):405–12.Google Scholar
  6. 6.
    Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, Kington RS, Lane NE, Nevitt MC, Zhang Y, Sowers M, McAlindon T, Spector TD, Poole AR, Yanovski SZ, Ateshian G, Sharma L, Buckwalter JA, Brandt KD, Fries JF. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Internal Med. 2000;133(8):635–46.CrossRefGoogle Scholar
  7. 7.
    Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Youn I, Choi JB, Cao L, Setton LA, Guilak F. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Osteoarthr Cartil. 2006;14:889–97.PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen NP, Foster RJ, Mow VC. Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sports Phys Ther. 1998;28(4):203–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Luo Y, Sinkeviciute D, He Y, Karsdal M, Henrotin Y, Mobasheri A, Önnerfjord P, Bay-Jensen A. The minor collagens in articular cartilage. Protein Cell. 2017;8:560. Scholar
  12. 12.
    Wilson W, Driessen NJB, van Donkelaar CC, Ito K. Mechanical regulation of the chondron collagen fiber network structure. Trans Orthop Res Soc. 2006;31:1520.Google Scholar
  13. 13.
    Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87(1):77–95.PubMedCrossRefGoogle Scholar
  14. 14.
    Danišovič L, Varga I, Polák S. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell. 2012;44(2):69–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Brady MA, Waldman SD, Ethier CR. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction. Tissue Eng Part B Rev. 2015;21(1):20–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Mankin HJ. Mitosis in articular cartilage of immature rabbits. Clin Orthop Relat Res. 1964;34:170–83.PubMedGoogle Scholar
  17. 17.
    Lattermann C, Romine SE. Osteochondral allografts: state of the art. Clin Sports Med. 2009;28(2):285–301.PubMedCrossRefGoogle Scholar
  18. 18.
    Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 2005;24(1):1–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Hoemann CD, Lafantaiseie-Favreau CH, Lascau-Coman V, Chen G, Guzmán-Morales J. The cartilage-bone interface. J Knee Surg. 2012;25(2):85–97.PubMedCrossRefGoogle Scholar
  20. 20.
    Norrdin RW, Kawcak CE, Capwell BA, McIlwraith CW. Calcified cartilage morphometry and its relation to subchondral bone remodeling in equine arthrosis. Bone. 1999;24(2):109–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Hwang J, Kyubwa EM, Bae WC, Bugbee WD, Masuda K, Sah RL. In vitro calcification of immature bovine articular cartilage: formation of a functional zone of calcified cartilage. Cartilage. 2010;1(4):287–97.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Langworthy MJ, Nelson FRT, Coutts RD. Basic science. In: Cole BJ, Malek MM, editors. Articular cartilage lesions: a practical guide to assessment and treatment. New York: Springer; 2004. p. 3–12.CrossRefGoogle Scholar
  23. 23.
    Finnilä MA, Thevenot J, Aho OM, Tiitu V, Rautiainen J, S1 K, Nieminen MT, Pritzker K, Valkealahti M, Lehenkari P, Saarakkala S. Association between subchondral bone structure and osteoarthritis histopathological grade. J Orthop Res. 2016; Scholar
  24. 24.
    Gomoll AH, Farr J. The osteochondral unit. In: Farr J, Gomoll AH, editors. Cartilage restoration: practical clinical applications. New York: Springer; 2014. p. 9–16.CrossRefGoogle Scholar
  25. 25.
    Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, Zheng MH. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013;15(6):223.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wang Y, Yuan M, Guo Q, Lu S, Peng J. Mesenchymal stem cells for treating articular cartilage defects and osteoarthritis. Cell Transplant. 2015;24:1661–78.PubMedCrossRefGoogle Scholar
  27. 27.
    Kawcak CE, McIlwraith CW, Norrdin RW, Park RD, James SP. The role of subchondral bone in joint disease: a review. Equine Vet J. 2001;33(2):120–6.PubMedCrossRefGoogle Scholar
  28. 28.
    van der Meijden OA, Gaskill TR, Millett PJ. Glenohumeral joint preservation: a review of management options for young, active patients with osteoarthritis. Arthroscopy. 2010;26(5):685–96.CrossRefGoogle Scholar
  29. 29.
    Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 2003;85-A Suppl 2:58–69.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bobic V. ICRS articular cartilage imaging committee. ICRS MR imaging protocol for knee articular cartilage. Zollikon: International Cartilage Repair Society; 2000.Google Scholar
  31. 31.
    Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F, Baum T, Mosher TJ, Carrino JA, Guermazi A. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics. 2011;31(1):37–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Gomoll AH, Yoshioka H, Watanabe A, Dunn JC, Minas T. Preoperative measurement of cartilage defects by MRI underestimates lesion size. Cartilage. 2011;2(4):389–93.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Nishioka H, Hirose J, Nakamura E, Okamoto N, Karasugi T, Taniwaki T, Okada T, Yamashita Y, Mizuta H. Detecting ICRS grade 1 cartilage lesions in anterior cruciate ligament injury using T1ρ and T2 mapping. Eur J Radiol. 2013;82(9):1499–505.PubMedCrossRefGoogle Scholar
  34. 34.
    Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med. 1997;38(6):863–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Akella SV, Regatte RR, Gougoutas AJ, Borthakur A, Shapiro EM, Kneeland JB, Leigh JS, Reddy R. Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T. Magn Reson Med. 2001;46(3):419–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Braun HJ, Gold GE. Advanced MRI of articular cartilage. Imaging Med. 2011;3(5):541–55.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Schmitz N, Laverty S, Kraus VB, Aigner T. Basic methods in histopathology of joint tissues. Osteoarthr Cartil. 2010;18:113–6.CrossRefGoogle Scholar
  38. 38.
    Allen RT, Robertson CM, Pennock AT, Bugbee WD, Harwood FL, Wong VW, Chen AC, Sah RL, Amiel D. Analysis of stored osteochondral allografts at the time of surgical implantation. Am J Sports Med. 2005;33(10):1479–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Gross AE, Kim W, Las Heras F, Backstein D, Safir O, Pritzker KP. Fresh osteochondral allografts for posttraumatic knee defects: long-term follow-up. Clin Orthop Relat Res. 2008;466(8):1863–70.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cook JL, Stoker AM, Stannard JP, Kuroki K, Cook CR, Pfeiffer FM, Bozynski C, Hung CT. A novel system improves preservation of osteochondral allografts. Clin Orthop Relat Res. 2014;472(11):3404–14.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Charles A. Baumann
    • 1
  • Betina B. Hinckel
    • 1
  • Chantelle C. Bozynski
    • 1
  • Jack Farr
    • 2
    Email author
  1. 1.Missouri Orthopaedic Institute, University of MissouriColumbiaUSA
  2. 2.Cartilage Restoration Center, OrthoIndy HospitalIndianapolisUSA

Personalised recommendations