Future-oriented Strategic Planning of Wastewater Treatment Plants

  • Nina ManigEmail author
  • Maike BeierEmail author
  • Karl-Heinz Rosenwinkel
Part of the Future City book series (FUCI, volume 12)


Current planning situations in Europe and China include upgrading or replacing of existing WWTPs (mainly in Europe) and the construction of new WWTPs (mainly in China). Both planning situations are increasingly confronted with future uncertainties due to high system complexity and rapidly changing conditions. In contrast to this, the long service life of over 30 years and the high capital commitments required lead to entrenched wastewater treatment concepts fixed over decades by the first design decision. In order to complement established WWTP planning methods, a methodology of future-oriented strategic planning focusing on WWTPs is presented in this chapter. The main purpose of this methodology is to define, simulate and evaluate potential long-term technological strategies for a WWTP. The basic steps of the methodology include (i) defining long-term technology concepts and (ii) corresponding transformation paths of a WWTP under different future scenarios. Finally, the methodology allows (iii) an ongoing control of scenario assumptions and (iv) an early support to start adapting the defined long-term technological concepts to current conditions. By this, the methodology will support the finding of robust and economic transformation paths and evaluated construction steps.



Thanks to the German project partners Ruhrverband (Inga Hölscher und Dr. Dieter Thöle) and IIRM of the Leipzig University, Germany (Dr. Stefan Geyler and Dr. Sabine Lautenschläger), for the fruitful discussions within the German BMBF-founded research project E-Klär.


  1. Beier M, Manig N (2017) Umsetzung einer standortspezifischen und strategischen Infrastrukturplanung von Kläranlagen (How to implement a site-specific and strategic infrastructure planning for WWTPs?). Presentation, E-Klär-Workshop 07.11.2017, Essen, GermanyGoogle Scholar
  2. Destatis (2015) Öffentliche Wasserversorgung und öffentliche Abwasserentsorgung - Öffentliche Abwasserbehandlung und -entsorgung für 2013 (Public water supply and public wastewater disposal - Public wastewater treatment and disposal in 2013). Fachserie 19, Reihe 2.1.2. German Federal Statistical Office, WiesbadenGoogle Scholar
  3. Dominguez D (2008) Handling Future Uncertainty – Strategic planning for the infrastructure sector. Dissertation No. 17867, ETH Zurich, SwitzerlandGoogle Scholar
  4. Dominguez D, Truffer B, Gujer W (2006) Driving forces in the long range development of wastewater treatment plants. Proceedings of the iEMSs 3rd Biennial Meeting, “Summit on Environmental Modelling and Software”. Burlington, VermontGoogle Scholar
  5. Dominguez D, Truffer B, Gujer W (2011) Tackling uncertainties in infrastructure sectors through strategic planning: the contribution of discursive approaches in the urban water sector. Water Policy 13(3):299–316CrossRefGoogle Scholar
  6. DWA (2011) Dynamic cost comparison calculations for selecting least-cost projects in water supply and wastewater disposal – DCCC – appraisal manual for project designers. German Association for Water, Wastewater and Waste (DWA), HennefGoogle Scholar
  7. DWA-A 131 (2016) Dimensioning of single-stage activated sludge plants. German standard DWA-A 131. German Association for Water, Wastewater and Waste (DWA), HennefGoogle Scholar
  8. Götze U, Rudolph F (1994) Instrumente der strategischen Planung (instruments of strategic planning). In: Bloech J, Götze U, Huch B, Lücke W, Rudolph F (eds) Strategische Planung – Instrumente, Vorgehensweisen und Informationssysteme. Physica-Verlag, HeidelbergGoogle Scholar
  9. Haasnoot M, Kwakkel JH, Walker WE, ter Maat J (2013) Dynamic adaptive policy pathways: a method for crafting robust decisions for a deeply uncertain world. Glob Environ Chang 23(2):485–498CrossRefGoogle Scholar
  10. Henriques C, Garnett K, Weatherhead EK, Lickorish FA, Forrow D, Delgado J (2015) The future water environment – using scenarios to explore the significant water management challenges in England and Wales to 2050. Sci Total Environ 512–513:381–396CrossRefGoogle Scholar
  11. Krystek U, Müller-Stewens G (2006) Strategische Frühaufklärung (Strategic foresight). In: Hahn D, Taylor B (eds) Strategische Unternehmungsplanung – Strategische Unternehmungsführung. Springer, Berlin/HeidelbergGoogle Scholar
  12. Kwakkel JH, Haasnoot M, Walker WE (2015) Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world. Clim Chang 132(3):373–386CrossRefGoogle Scholar
  13. Lienert J, Monstadt J, Truffer B (2006) Future scenarios for a sustainable water sector: a case study from Switzerland. Environ Sci Technol 40(2):436–442CrossRefGoogle Scholar
  14. Manig N (2018) Methodischer Ansatz zur zukunftsorientierten strategischen Planung von Kläranlagen (Methodological approach for futureoriented strategic planning of wastewater treatment plants). Dissertation, publication series of the Institute of Sanitary Engineering and Waste Management of the Leibniz University Hannover, Germany, No.167, (in press)Google Scholar
  15. Manig N, Beier M, Rosenwinkel KH, Thöle D, Hölscher I (2018) Konzeptionelle Umsetzung der strategischen, zukunftsweisenden Kläranlagenplanung (Conceptual implementation of a strategic, future-oriented WWTP planning). Final report of the German BMBF-Project E-Klär (No. 02WER1319), GermanyGoogle Scholar
  16. Störmer E, Truffer B (2009) Strategic decision making in infrastructure sectors: participatory foresight and strategic planning for sustainable sanitation. Geographica Helvetica 64(2):73–80CrossRefGoogle Scholar
  17. Truffer B, Störmer E, Maurer M, Ruef A (2010) Local strategic planning processes and sustainability transitions in infrastructure sectors. Environmental Policy and Governance 20(4):258–269CrossRefGoogle Scholar
  18. Zhang QH, Yang WN, Ngo HH, Guo WS, Jin PK, Dzakpasu M, Yang SJ, Wang Q, Wang XC, Ao D (2016) Current status of urban wastewater treatment plants in China. Environ Int 92–93:11–22CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Sanitary Engineering and Waste ManagementLeibniz University HannoverHannoverGermany

Personalised recommendations