Advertisement

Frequency and Multiscale Methods

  • Kristian Bredies
  • Dirk Lorenz
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

Like the methods covered in Chap.  3, the methods based on frequency or scale-space decompositions belong to the older methods in image processing. In this case, the basic idea is to transform an image into a different representation in order to determine its properties or carry out manipulations. In this context, the Fourier transformation plays an important role.

References

  1. 27.
    E.J. Candès, D.L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)CrossRefGoogle Scholar
  2. 28.
    E. Candès, L. Demanet, D. Donoho, L. Ying, Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)MathSciNetCrossRefGoogle Scholar
  3. 48.
    I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)MathSciNetCrossRefGoogle Scholar
  4. 68.
    K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001)CrossRefGoogle Scholar
  5. 90.
    G. Kutyniok, D. Labate, Construction of regular and irregular shearlets. J. Wavelet Theory Appl. 1, 1–10 (2007)zbMATHGoogle Scholar
  6. 94.
    A.K. Louis, P. Maass, A. Rieder, Wavelets: Theory and Applications (Wiley, Chichester, 1997)zbMATHGoogle Scholar
  7. 96.
    J. Ma, G. Plonka, The curvelet transform: a review of recent applications. IEEE Signal Process. Mag. 27(2), 118–133 (2010)CrossRefGoogle Scholar
  8. 97.
    S. Mallat, A Wavelet Tour of Signal Processing - The Sparse Way, with Contributions from Gabriel Peyré, 3rd edn. (Elsevier/Academic, Amsterdam, 2009)zbMATHGoogle Scholar
  9. 109.
    W.B. Pennebaker, J.L. Mitchell, JPEG: Still Image Data Compression Standard (Springer, New York, 1992)Google Scholar
  10. 122.
    W. Rudin, Functional Analysis. McGraw-Hill Series in Higher Mathematics (McGraw-Hill, New York, 1973)Google Scholar
  11. 123.
    W. Rudin, Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics, 3rd edn. (McGraw-Hill, New York, 1976)Google Scholar
  12. 141.
    J. Weidmann, Linear Operators in Hilbert Spaces. Graduate Texts in Mathematics, vol. 68. (Springer, New York, 1980). Translated from the German by Joseph SzücsCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kristian Bredies
    • 1
  • Dirk Lorenz
    • 2
  1. 1.Institute for Mathematics and ScientificUniversity of GrazGrazAustria
  2. 2.BraunschweigGermany

Personalised recommendations