Basic Tools

  • Kristian Bredies
  • Dirk Lorenz
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


In this book we regard, admittedly slightly arbitrarily, as basic tools histograms and linear and morphological filters. These tools belong to the oldest methods in mathematical image processing and are discussed in early books on digital image processing as well (cf. [67, 114, 119]).


  1. 11.
    V. Aurich, J. Weule, Non-linear gaussian filters performing edge preserving diffusion, in Proceedings 17. DAGM-Symposium, Bielefeld (Springer, Heidelberg, 1995), pp. 538–545Google Scholar
  2. 23.
    T. Brox, O. Kleinschmidt, D. Cremers, Efficient nonlocal means for denoising of textural patterns. IEEE Trans. Image Process. 17(7), 1083–1092 (2008)MathSciNetCrossRefGoogle Scholar
  3. 25.
    A. Buades, J.-M. Coll, B. Morel, A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)MathSciNetCrossRefGoogle Scholar
  4. 29.
    J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  5. 67.
    R.C. Gonzalez, P.A. Wintz, Digital Image Processing (Addison-Wesley, Reading, 1977)zbMATHGoogle Scholar
  6. 69.
    F. Guichard, J.-M. Morel, Partial differential equations and image iterative filtering, in The State of the Art in Numerical Analysis, ed. by I.S. Duff, G.A. Watson. IMA Conference Series (New Series), vol. 63 (Oxford University Press, Oxford, 1997)Google Scholar
  7. 91.
    E.H. Lieb, M. Loss, Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. (American Mathematical Society, Providence, 2001)Google Scholar
  8. 108.
    S. Paris, P. Kornprobst, J. Tumblin, F. Durand, Bilateral filtering: theory and applications. Found. Trends Comput. Graph. Vis. 4(1), 1–73 (2009)CrossRefGoogle Scholar
  9. 114.
    W.K. Pratt, Digital Image Processing (Wiley, New York, 1978)zbMATHGoogle Scholar
  10. 116.
    J.M.S. Prewitt, Object enhancement and extraction, in Picture Processing and Psychopictorics, ed. by B.S. Lipkin, A. Rosenfeld (Academic, New York, 1970)Google Scholar
  11. 117.
    T.W. Ridler, S. Calvard, Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. 8(8), 630–632 (1978)CrossRefGoogle Scholar
  12. 119.
    A. Rosenfeld, A.C. Kak, Digital Picture Processing (Academic, New York, 1976)zbMATHGoogle Scholar
  13. 132.
    S.M. Smith, J.M. Brady, SUSAN—A new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)CrossRefGoogle Scholar
  14. 133.
    I.E. Sobel, Camera models and machine perception. PhD thesis, Stanford University, Palo Alto (1970)Google Scholar
  15. 134.
    P. Soille, Morphological Image Analysis - Principles and Applications (Springer, Berlin, 1999)CrossRefGoogle Scholar
  16. 136.
    C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in International Conference of Computer Vision (1998), pp. 839–846Google Scholar
  17. 143.
    M. Welk, J. Weickert, F. Becker, C. Schnörr, C. Feddern, B. Burgeth, Median and related local filters for tensor-valued images. Signal Process. 87(2), 291–308 (2007)CrossRefGoogle Scholar
  18. 145.
    L.P. Yaroslavsky, Digital Picture Processing, An Introduction (Springer, Berlin, 1985)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kristian Bredies
    • 1
  • Dirk Lorenz
    • 2
  1. 1.Institute for Mathematics and ScientificUniversity of GrazGrazAustria
  2. 2.BraunschweigGermany

Personalised recommendations