Advertisement

Passive Margin and Continental Basin: Towards a New Paradigm

  • Daniel Aslanian
  • Maryline Moulin
  • Philippe Schnürle
  • Mikael Evain
  • Alexandra Afilhado
  • Marina Rabineau
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

The existence of an unique thinning process generating passive continental margins must be considered for discussion: the diversity of their structural morphology is indeed related to tectonic heritage, geodynamic context and probably mantle heat segmentation. However, the recurrence of certain general features pleads in favour of common rules of the first-order. The commonly used models, like simple shear, pure shear or polyphase models, to explain the lithospheric stretching and consequent crustal thinning of passive continental margins, exclude exchanges between the lower continental crust and upper mantle, and are thus referred as conservational models. They imply large amount of horizontal movement and are not able to explain the observations collected in the most conjugate margins neither fit the kinematic constraints. Based on wide-angle seismic images on passive margins in the Mediterranean sea, the Central Atlantic, the Equatorial Atlantic, the Central segment of the South Atlantic and the Indian oceans, we are now able to propose a new paradigm.

Keywords

Lower continental crust Thinning process Passive margin Continental basin Aborted rift 

References

  1. 1.
    McKenzie, D.: Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40(1), 25–32 (1978)CrossRefGoogle Scholar
  2. 2.
    Wernicke, B.: Uniform sense normal simple shear of continental lithosphere. Can. J. Earth Sci. 22, 108–125 (1985)CrossRefGoogle Scholar
  3. 3.
    Aslanian, D., Moulin, M.: Paleogeographic consequences of conservational models in the South Atlantic Ocean. In: Mohriak, W.U., Danforth, A., Post, P.J., Brown, D.E., Tari, G.C., Nemcok, M., Sinha, S.T. (eds.) Conjugate Divergent Margins. Geological Society, London, Special Publications, vol. 369 (2012). http://dx.doi.org/10.1144/SP369.5
  4. 4.
    Hoffmann, H.J., Reston, T.J.: The nature of the S reflector beneath the Galicia Bank rifted margin: preliminary results from pre-stack depth migration. Geology 20(12), 1091–1094 (1992)CrossRefGoogle Scholar
  5. 5.
    De Voogd, B., et al.: First deep seismic reflection transect from the Gulf of Lions to Sardinia (ECORS-Crop profiles in Western Mediterranean). Geodynamics 22, 265–274 (1991)CrossRefGoogle Scholar
  6. 6.
    Pascal, G., et al.: The ocean continent boundary in the Gulf of Lions from analysis of expanding spread profiles and gravity modelling. Geophys. J. Int. 113, 701–726 (1993)CrossRefGoogle Scholar
  7. 7.
    Boillot, et al.: Ocean–continent boundary off the Iberia margin: a serpentinite diapir west of the Galicia Bank. Earth Planet. Sci. Lett. 48, 23–34 (1980)CrossRefGoogle Scholar
  8. 8.
    Aslanian, D., et al.: Brasilian and Angolan passive margins: the kinematic constraints. Tectonophysics Spec. Issue Role Magmatism 468, 98–112 (2009)Google Scholar
  9. 9.
    Brun, J.P., Beslier, M.O.: Mantle exhumation at passive margins. Earth Planet. Sci. Lett. 142, 161–173 (1996)CrossRefGoogle Scholar
  10. 10.
    Lavier, L., Manatschal, G.: A mechanism to thin the continental lithosphere at magma-poor margins. Nature 440, 324–328 (2006).  https://doi.org/10.1038/nature04608CrossRefGoogle Scholar
  11. 11.
    Kusznir, N.J., Karner, G.D.: Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: application to the Woodlark, Newfoundland and Iberia margins. In: Karner, G.D., et al. (eds.) Geological Society, London, Special Publications, vol. 282, pp. 389–419 (2007)CrossRefGoogle Scholar
  12. 12.
    Reston, T.J.: The opening of the central segment of the South Atlantic: symmetry and the extension discrepancy. Pet. Geosci. 16, 199–206 (2010).  https://doi.org/10.1144/1354-079309-907CrossRefGoogle Scholar
  13. 13.
    Huismans, R.S., Beaumont, C.: Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473, 74–78 (2011).  https://doi.org/10.1038/nature09988CrossRefGoogle Scholar
  14. 14.
    Afilhado, A., et al.: Deep crustal structure across an young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment)—II. Sardinia’s margin. BSGF, ILP Special 186, 331–351 (2015).  https://doi.org/10.2113/gssgfbull.186.4-5.331CrossRefGoogle Scholar
  15. 15.
    Moulin, M., et al.: Deep crustal structure across an young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment)—I. Gulf of Lion’s margin. BSGF 186, 309–330 (2015).  https://doi.org/10.2113/gssgfbull.186.4-5.309CrossRefGoogle Scholar
  16. 16.
    Aslanian, D., et al.: Structure and evolution of the Gulf of Lions: the Sardinia seismic experiment and the GOLD (Gulf of Lions Drilling) project. Lead. Edge 31(7), 786–792 (2012)CrossRefGoogle Scholar
  17. 17.
    Leroux, E., et al.: Sedimentary markers: a window into deep geodynamic processes. Terra Nova 27(2), 122–129 (2015).  https://doi.org/10.1111/ter.12139CrossRefGoogle Scholar
  18. 18.
    Pellen, R., et al.: The Minorca Basin: a buffer zone between Valencia and Provençal Basins. Terra Nova 28(4), 245–256 (2016)CrossRefGoogle Scholar
  19. 19.
    Sahabi, M., et al.: Un nouveau point de départ pour l’histoire de l’Atlantique Central. C. R. A. S. (2004)Google Scholar
  20. 20.
    Klingelhoefer, F., et al.: Crustal structure variations along the NW-African Continental margin: a comparison of new and existing models from wide-angle and reflection seismic data. Tectonophysics 674, 227–252 (2016)CrossRefGoogle Scholar
  21. 21.
    Moulin, M., et al.: Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaiAngo project). Geophys. J. Int. 162, 793–810 (2005)CrossRefGoogle Scholar
  22. 22.
    Moulin, M., et al.: A new starting point for the history of the South Atlantic Ocean. Earth Sci. Rev. 98(1–2), 1–37 (2010).  https://doi.org/10.1016/j.earscirev.2009.08.001CrossRefGoogle Scholar
  23. 23.
    Moulin, M., et al.: Kinematic keys of the Santos—Namibe Basins. Geological Society, London, Special Publications, vol. 369 (2012) http://dx.doi.org/10.1144/SP369.3
  24. 24.
    Evain, M., et al.: Deep structure of the Santos Basin-São Paulo Plateau System (SSPS). Geophys. J. Int. 120(8), 5401–5431 (2015).  https://doi.org/10.1002/2014jb011561CrossRefGoogle Scholar
  25. 25.
    Loureiro, A., et al.: Imaging exhumed lower continental crust in the distal Jequitinhonha basin. Brazil. J. South Am. Earth Sci. 84, 351–372 (2018).  https://doi.org/10.1016/j.jsames.2018.01.009CrossRefGoogle Scholar
  26. 26.
    Pinheiro, J., et al.: Modeling onshore-offshore wide-angle seismic data across the Alagoas-Sergipe passive margins, NW Brazil. J. South Am. Earth Sci. (2018)Google Scholar
  27. 27.
    Leinweber, V., Klingelhöfer, F., Neben, S., Reichert, C., Aslanian, D., Matias, L., Heyde, I., Schreckenberge, B., Jokat, W.: Deep crustal structure of the Mozambic margin from wide-angle and reflection seismic data (The MoBaMaSis experiment). Tectonophysics 599, 170–196 (2013)CrossRefGoogle Scholar
  28. 28.
    Moulin, M., et al.: Gondwana breakup, passive margin genesis and contourite: insigths from the Natal Valley. submitted to GeologyGoogle Scholar
  29. 29.
    Thybo, Nielsen: Magma-compensated crustal thinning in continental rift zones. Nature 457 (2009). https://doi.org/10.1038/nature07688CrossRefGoogle Scholar
  30. 30.
    Kashubin, et al.: Crustal structure of the Mendeleev Rise and the Chukchi Plateau (Arctic Ocean) along the Russian wide-angle and multichannel seismic reflection experiment “Arctic-2012”. J. Geodyn. (2018). https://doi.org/10.1016/j.jog.2018.03.006CrossRefGoogle Scholar
  31. 31.
    Tozer, B., Watts, A. B., Daly, M. C.: Crustal structure, gravity anomalies, and subsidence history of the Parnaíba cratonic basin, Northeast Brazil. J. Geophys. Res. Solid Earth 122, 5591–5621 (2017). https://doi.org/10.1002/2017JB014348Google Scholar
  32. 32.
    Schnürle, P., Leprêtre, A., Verrier, F., Evain, M., Aslanian, D., Leroy, S., de Clarens, P., Dias, N., Afilhado, A., Moulin, M.: Crustal structure of the Natal Valley from combined wide-angle and reflection seismic data (MOZ3/5 cruise), South Mozambique Margin, SEISMIX conference (2018)Google Scholar
  33. 33.
    Jolivet, L., Gorini, C., Smit, J., Leroy, S.: Continental break-up and the dynamics of rifting in back-arc basins: the Gulf of Lion margin. Tectonophysic (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel Aslanian
    • 1
  • Maryline Moulin
    • 1
  • Philippe Schnürle
    • 1
  • Mikael Evain
    • 1
  • Alexandra Afilhado
    • 2
  • Marina Rabineau
    • 3
  1. 1.IFREMER, REM/GM/LGS, Centre de BrestPlouzanéFrance
  2. 2.Instituto Superior de Engenharia de LisboaLisbonPortugal
  3. 3.CNRS, UMR6538, LGO (CNRS/UBO/UBS), IUEMPlouzanéFrance

Personalised recommendations