Aptian-Albian Diapirism and Compressional Tectonics Since Late Maastrichtian to Quaternary in Mateur-Tebourba Region (Northern Tunisian Atlas)

  • Achraf Zouari
  • Hedi ZouariEmail author
  • Fehmy Belghouthi
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)


New outcrop and seismic based tectono-stratigraphic observations of the es Sakkak-el Baouala Range in northern Tunisia provide a more sophisticated model of its structural evolution than previously possible. This model envisages two phases of contrasting structural deformation to explain the linear salt structures now observed in outcrop. Early extension triggered reactive and then active diapirism with salt reaching the surface during the Aptian. Diapiric structures formed at this time were subsequently buried by Albian-Early Maastrichtian sediments before undergoing further intermittent growth in the late Maastrichtian and Cenozoic in response to compression from the north. Thrusts assisted salt flowage to the surface in the early Paleocene was followed by erosion and reburial in the later Paleocene and Eocene. Growth synclines developed along the thrust foot-walls of salt cored structures. Jbel el Hallouf provides an excellent example of a flanking syncline formed during the Aquitanain-Tortonian, accommodating thick Miocene deposits while the es Sakkak salt cored anticline continued to rise on the thrust hanging-wall, until burial by upper Tortonian sediments. A further phase of folding and thrusting occurred during the late Miocene. This created significant topographic relief which was subsequently eroded and redeposited as conglomerates in the adjacent valleys. Compressional deformation continues to influence sedimentation into the Pliocene and later.


Tunisia Mateur Diapir Albian-Aptian Compressional deformation Late Maastrichtian to quaternary 


  1. 1.
    Perthuisot, V.: Dynamique et pétrogenèse des extrusions triasiques en Tunisie septentrionale, Thèse de Doctorat és-Sciences. ed. Travaux du Laboratoire de Géologie, Ecole Normale de Paris (1978)Google Scholar
  2. 2.
    Perthuisot, V., Rouvier, H.: Les diapirs du Maghreb central et oriental: des appareils variés, résultats d’une évolution structurale et pétrogénétique complexe. Bull. Soc. Géol. Fr. 163, 751–760 (1992)Google Scholar
  3. 3.
    Boukadi, N., Bedir, M.: L’halocinèse en Tunisie: contexte tectonique et chronologie des événements. C. R. Geosci. 231, 480–482 (1996)Google Scholar
  4. 4.
    Jallouli, C., Chikhaoui, M., Braham, A., Turki, M.M., Mickus, K., Benassi, R.: Evidence for Triassic salt domes in the Tunisian Atlas from gravity and geological data. Tectonophysics 396, 209–225 (2005). Scholar
  5. 5.
    Gharbi, R.A., Chihi, L., Hammami, M., Soumaya, A., Kadri, A.: Manifestations tectono-diapiriques synsédimentaires et polyphasées d’âge Crétacé supérieur–Quaternaire dans la région de Zag Et Tir (Tunisie centre-nord). C. R. Geosci. 337, 1293–1300 (2005). Scholar
  6. 6.
    Jallouli, C., Mickus, K., Turki, M.M., Rihane, C.: Gravity and aeromagnetic constraints on the extent of Cenozoic volcanic rocks within the Nefza-Tabarka region, northwestern Tunisia. J. Volcanol. Geotherm. Res. 122, 51–68 (2003)CrossRefGoogle Scholar
  7. 7.
    Truillet, R., Turki, M.M.: La tectonique tangentielle dans la zone des diapirs. l’exemple du Dj. Amar de l’Ariana (Tunisie septentrionale). C. R. Acad. Sci. Paris 291, 325–327 (1980)Google Scholar
  8. 8.
    Truillet, R., Delteil, J.: Allochtonie Alpine de la “zone des diapirs” (Tunisie septentrionale). C. R. Acad. Sci. Paris 1143–1146 (1982)Google Scholar
  9. 9.
    Vila, J.-M.: Première étude de surface d’un grand “glacier de sel” sous-marin: l’est de la structure Ouenza-Ladjbel-Meridef (confins algéro-tunisiens). Proposition d’un scenario de mise en place et comparaisons. Bull. Soc. Géol. Fr. 149–167 (1995)Google Scholar
  10. 10.
    Vila, J.-M., Ben Youssef, M., Bouhlel, S., Ghanmi, M., Kassa, S., Miaadi, F.: Tectonique en radeaux au toit d’un “glacier de sel” sous-marin albien de Tunisie du Nord-Ouest: exemple du secteur minier de Gueurn Halfaya. C. R. Acad. Sci. Paris 563–570 (1998)CrossRefGoogle Scholar
  11. 11.
    Ben Chelbi, M., Melki, F., Zargouni, F.: Mode de mise en place des corps salifères dans l’Atlas septentrional de Tunisie. Exemple de l’appareil de Bir Afou. C. R. Geosci. 338, 349–358 (2006). Scholar
  12. 12.
    Masrouhi, A.: Les appareils salifères des régions de Mateur, Tébourba et de Medjez-el-Bab (Tunisie du Nord) (Ph.D. thesis). Tunis-el-Manar University, Tunis (2006)Google Scholar
  13. 13.
    Masrouhi, A., Bellier, O., Koyi, H., Vila, J.-M., Ghanmi, M.: The evolution of the Lansarine-Baouala salt canopy in the North African Cretaceous passive margin in Tunisia. Geol. Mag. 150, 835–861 (2013). Scholar
  14. 14.
    Ben Haj Ali, M., Jedoui, Y., Dali, T., Ben Salem, H., Memmi, L.: Carte Géologique de la Tunisie au 1/50 000. Ed. Serv. Géol. ONM, Tunis (1985)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Achraf Zouari
    • 1
    • 2
  • Hedi Zouari
    • 1
    Email author
  • Fehmy Belghouthi
    • 1
    • 3
  1. 1.Natural Water Treatment Laboratory, Water Researches and Technologies CentreTechnopark of Borj CedriaSolimanTunisia
  2. 2.Faculty of Mathematical, Physical and Natural Sciences of TunisUniversity of El ManarEl Manar, TunisTunisia
  3. 3.Faculty of Sciences of BizerteUniversity of CarthageJarzounaTunisia

Personalised recommendations