Advertisement

Monitoring of Grasslands Management Practices Using Interferometric Products Sentinel-1

  • Ons ChiboubEmail author
  • Amjad Kallel
  • Pierre-Louis Frison
  • Maïlys Lopes
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Grasslands are globally important for their economic and environmental services, for these reasons their conservation and their mode of exploitation must be monitored. In this work we wanted to study the relationship between temporal interferometric coherence, radar backscattered coefficient and types of agricultural practices associated with grasslands such as grazing, mowing, and the mixed exploitation of these two practices. High coherence values due to backscattering from the ground were linked to ploughed bare fields and low vegetation height and the backscattering coefficient σo increases with the biomass up to a saturation level. Results revealed that grazing actions are easily detectable especially with the coherence values while mowing date cannot be clearly detected whether by coherence or by backscattered coefficient.

Keywords

Grasslands Mowing Grazing Sentinel-1 Times series Interferometric coherence Radar backscattered coefficient 

References

  1. 1.
    Huyghe, C., Vliegher, A., Gils, B., Peeters, A. (coordinators).: Grasslands and herbivore production in Europe and effects on common policies. Versailles, France: Editions Quae (2014)Google Scholar
  2. 2.
    O’Mara FP.: The role of grasslands in food security and climate change. Ann. Bot 110, 1263–1270 (2012).  https://doi.org/10.1093/aob/mcs209doi:
  3. 3.
    Frison, P., Lardeux, C.: Vegetation cartography from sentinel‐1 radar images. In: Baghdadi, N., Mallet, C., Zribi, M. (eds.) QGIS and Applications in Agriculture and Forest (2018).  https://doi.org/10.1002/9781119457107.ch6CrossRefGoogle Scholar
  4. 4.
    Ali, I.: Retrieval of grassland biophysical parameters using multitemporal optical and radar satellite data. Ph.D. thesis, University College Cork, Cork, Ireland, 299 pages (2016)Google Scholar
  5. 5.
    Lopes, M., Fauvel, M., Ouin, A., Girard, S.: Potential of Sentinel-2 and SPOT5 (Take5) time series for the estimation of grasslands biodiversity indices. In: IEEE MultiTemp 2017—9th International Workshop on the Analysis of Multitemporal Remote Sensing Images, Jun 2017, Bruges, Belgium, pp. 1–4 (2017)Google Scholar
  6. 6.
    Grant, K., Siegmund, R., Wagner, M., Hartmann, S.: Satellite based assessment of grassland yields. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial in formation Sciences, vol. XL-7/W3 (2015)CrossRefGoogle Scholar
  7. 7.
    Tamm, T., Zalite, K., Voormansik, K., Talgre, L.: Relating sentinel-1 interferometric coherence to mowing events on grasslands. Remote Sens. 8(10), 802 (2016).  https://doi.org/10.3390/rs8100802CrossRefGoogle Scholar
  8. 8.
    Fieuzal, R.: Apports des données radar pour l’estimation des paramètres biophysiques des surfaces agricoles. Sciences de la Terre. Université Toulouse III - Paul Sabatier. Français (classification réalisée par Marais-Sicre en 2010) (2013)Google Scholar
  9. 9.
    Carrié, R., Andrieu, E., Cunningham, S.A., Lentini, P.E., Loreau, M, Ouin, A.: Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography. 40, 85–97 (2016).  https://doi.org/10.1111/ecog.02632CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ons Chiboub
    • 1
    Email author
  • Amjad Kallel
    • 1
  • Pierre-Louis Frison
    • 2
  • Maïlys Lopes
    • 3
  1. 1.Sfax National School of EngineeringUniversity of SfaxSfaxTunisia
  2. 2.LaSTIG, University of Paris-Est Marne-la-Vallée/IGNMarne la ValléeFrance
  3. 3.DYNAFOR, INRAUniversity of ToulouseCastanet-TolosanFrance

Personalised recommendations