Advertisement

An Innovative Technique for Estimating the Radius of Buried Cylindrical Targets Using GPR

  • Rim GhozziEmail author
  • Samer Lahouar
  • Chokri Souani
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Ground-Penetrating Radar (GPR) data analysis provides quantitative information about the objects buried in a medium, such as their sizes or depths. This is achieved by studying the wave reflections caused by the electromagnetic contrasts in the medium. This paper proposed an innovative technique for the determination of the radius of a buried cylindrical object based on the fitting of selected reflected points in the GPR trace to a geometric model. The performances of this technique were evaluated using data generated by a GPR simulator, gprMax, which uses the Finite-Difference Time-Domain (FDTD) method. Simulation results show that our technique can estimate the radius of the buried cylinder with Mean Absolute Percentage Error (MAPE) of 0.5%. A comparative study of our technique with another one from the literature shows a higher accuracy of our technique with radius estimation carried out in simpler steps, reflecting its robustness.

Keywords

Buried cylindrical radius estimation Ground penetrating radar (GPR) Non-Destructive testing (NDT) 

References

  1. 1.
    Ardekani, M.R.M.: Off- and on-ground GPR techniques for field-scale soil moisture mapping. Geoderma 200–201, 55–66 (2013).  https://doi.org/10.1016/j.geoderma.2013.02.010CrossRefGoogle Scholar
  2. 2.
    Gomez-Ortiz, D., Montesinos, F.G., Martin-Crespo, T., Solla, M., Arnoso, J., Velez, E.: Combination of geophysical prospecting techniques into areas of high protection value: Identification of shallow volcanic structures. J. Appl. Geophys. 109, 15–26 (2014).  https://doi.org/10.1016/j.jappgeo.2014.07.009CrossRefGoogle Scholar
  3. 3.
    Ma, C.G., Zhao, Q., Huo, J.J., Chang, X.H., Ran, L.M.: Single Borehole radar for well logging in a limestone formation: experiments and simulations. J. Environ. Eng. Geophys. 21, 201–213 (2016).  https://doi.org/10.2113/jeeg21.4.20CrossRefGoogle Scholar
  4. 4.
    Arosio, D., Munda, S., Zanzi, L., Longoni, L., Papini, M.: GPR investigations to assess the state of damage of a concrete water tunnel. J. Environ. Eng. Geophys. 17, 159–169 (2012).  https://doi.org/10.2113/JEEG17.3.159CrossRefGoogle Scholar
  5. 5.
    Oliveira, D.B., Vieira, D.A.G., Lisboa, A.C., Goulart, F.: A well posed inverse problem for automatic pavement parameter estimation based on GPR data. NDT E Int. 65, 22–27 (2014).  https://doi.org/10.1016/j.ndteint.2014.03.008CrossRefGoogle Scholar
  6. 6.
    Solla, M., Asorey-Cacheda, R., Nunez-Nieto, X., Conde-Carnero, B.: Evaluation of historical bridges through recreation of GPR models with the FDTD algorithm. NDT E Int. 77, 19–27 (2016).  https://doi.org/10.1016/j.ndteint.2015.09.003CrossRefGoogle Scholar
  7. 7.
    Olhoeft, G.R.: Maximizing the information return from ground penetrating radar. J. Appl. Geophys. 43, 175–187 (2000).  https://doi.org/10.1016/s0926-9851(99)00057-9CrossRefGoogle Scholar
  8. 8.
    Al-Qadi, I.L., Lahouar, S.: Measuring rebar cover depth in rigid pavements with ground-penetrating radar. Construction 1907, 81–85 (2005).  https://doi.org/10.3141/1907-09CrossRefGoogle Scholar
  9. 9.
    Shihab, S.: Radius estimation for cylindrical objects detected by ground penetrating radar. Sens. Imaging 6, 151–166 (2005).  https://doi.org/10.1007/s11220-005-0004-1CrossRefGoogle Scholar
  10. 10.
    Zhang, P., Guo, X.X., Muhammat, N., Wang, X.D.: Research on probing and predicting the diameter of an underground pipeline by GPR during an operation period. Tunn. Undergr. Space Technol. 58, 99–108 (2016).  https://doi.org/10.1016/j.tust.2016.04.005CrossRefGoogle Scholar
  11. 11.
    Ghozzi, R., Lahouar, S., Achmad Louis, S., Souani, C., Besbes, K.: Extraction of geometric parameters of underground tube using GPR. In: International Conference on Control, Automation and Diagnosis (ICCAD), Hammamet-Tunisia (2017).  https://doi.org/10.1109/cadiag.2017.8075631
  12. 12.
    Ghozzi, R., Lahouar, S., Souani, C.: The estimation of buried empty cylindrical tubes characteristics using GPR. In: Advanced Technologies for Signal & Image Processing (ATSIP’2018), Sousse, Tunisia (2018).  https://doi.org/10.1109/atsip.2018.8364486

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Microelectronic and Instrumentation Laboratory, Faculty of Sciences MonastirUniversity of MonastirMonastirTunisia
  2. 2.National School of Engineers of SousseUniversity of SousseSousseTunisia
  3. 3.Center for Research in Microelectronics and Nanotechnology, Technopole of SousseSousseTunisia
  4. 4.Higher Institute of Applied Sciences and Technology of Sousse, University of SousseSousseTunisia

Personalised recommendations