Advertisement

Mass-Spring Damper Array as a Mechanical Medium for Computation

  • Yuki YamanakaEmail author
  • Takaharu Yaguchi
  • Kohei Nakajima
  • Helmut Hauser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11141)

Abstract

Recently, it has been reported that the dynamics of mechanical structures can be used as a computational resource—also referred to as morphological computation. In particular soft materials have been shown to have the potential to be used for time series forecasting. Although most soft materials can be modeled by mass-spring systems, a limited number of researches has been performed on the computational capabilities of such systems. In this paper, we propose an array of masses linked in a grid-like structure by spring-damper connections to investigate systematically the influence of structural (size) and dynamic (stiffness, damping) parameters on the computational capabilities for time series forecasting. In addition, such a structure gives us a good approximation of two-dimensional elastic media, e.g., a rubber sheet, and therefore a direct pathway to potentially implement results in a real system. In particular, we compared the mass-spring array to echo state networks, which are standard machine learning techniques for this kind of problems and are also closely related to the underlying theoretical models applied when exploiting mechanical structures for computation. Our results suggest a clear connection of morphological features to computational capabilities.

Keywords

Soft Robotics Morphological computation Reservoir computing Mass-spring system Recurrent neural network 

Supplementary material

Supplementary material 1 (mp4 34356 KB)

References

  1. 1.
    Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–709 (2000)CrossRefGoogle Scholar
  2. 2.
    Eder, M., Hisch, F., Hauser, H.: Morphological computation-based control of a modular, pneumatically driven, soft robotic arm. Adv. Robot. 32(7), 375–385 (2018).  https://doi.org/10.1080/01691864.2017.1402703CrossRefGoogle Scholar
  3. 3.
    Fernando, C., Sojakka, S.: Pattern recognition in a bucket. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 588–597. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39432-7_63CrossRefGoogle Scholar
  4. 4.
    Hauser, H., Füchslin, R., Nakajima, K.: Morphological computation—the physical body as a computational resource. In: Hauser, H.; Füchslin, R.M., Pfeifer, R. (eds.) Opinions and Outlooks on Morphological Computation, Chap. 20, pp. 226–244 (2014). ISBN 978-3-033-04515-6Google Scholar
  5. 5.
    Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105(5), 355–370 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: The role of feedback in morphological computation with compliant bodies. Biol. Cybern. 106(10), 595–613 (2012).  https://doi.org/10.1007/s00422-012-0516-4MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Advances in Neural Information Processing Systems, pp. 609–616 (2003)Google Scholar
  8. 8.
    Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)CrossRefGoogle Scholar
  9. 9.
    Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state networks with leaky-integrator neurons. Neural Netw. 20(3), 335–352 (2007)CrossRefGoogle Scholar
  10. 10.
    Kang, R., et al.: Dynamic model of a hyper-redundant, octopus-like manipulator for underwater applications. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4054–4059 (2011).  https://doi.org/10.1109/IROS.2011.6094468
  11. 11.
    Laschi, C., Mazzolai, B., Cianchetti, M.: Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1(1), eaah3690 (2016)CrossRefGoogle Scholar
  12. 12.
    Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)CrossRefGoogle Scholar
  13. 13.
    Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)CrossRefGoogle Scholar
  14. 14.
    Nakajima, K., Li, T., Hauser, H., Pfeifer, R.: Exploiting short-term memory in soft body dynamics as a computational resource. J. R. Soc. Interface 11(100) (2014)CrossRefGoogle Scholar
  15. 15.
    Nakajima, K., Hauser, H., Kang, R., Guglielmino, E., Caldwell, D., Pfeifer, R.: A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front. Comput. Neurosci. 7, 91 (2013).  https://doi.org/10.3389/fncom.2013.00091CrossRefGoogle Scholar
  16. 16.
    Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Information processing via physical soft body. Sci. Rep.5 (2015)Google Scholar
  17. 17.
    Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Exploiting the dynamics of soft materials for machine learning. Soft Robot. 5(3), 339–347 (2018)CrossRefGoogle Scholar
  18. 18.
    Paquot, Y., et al.: Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012)CrossRefGoogle Scholar
  19. 19.
    Paul, C., Valero-Cuevas, F.J., Lipson, H.: Design and control of tensegrity robots for locomotion. IEEE Trans. Robot. 22(5), 944–957 (2006)CrossRefGoogle Scholar
  20. 20.
    Pfeifer, R., Gómez, G.: Morphological computation – connecting brain, body, and environment. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS (LNAI), vol. 5436, pp. 66–83. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00616-6_5CrossRefGoogle Scholar
  21. 21.
    Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)CrossRefGoogle Scholar
  22. 22.
    Urbain, G., Degrave, J., Carette, B., Dambre, J., Wyffels, F.: Morphological properties of mass-spring networks for optimal locomotion learning. Front. Neurorobotics 11, 16 (2017).  https://doi.org/10.3389/fnbot.2017.00016CrossRefGoogle Scholar
  23. 23.
    Verstraeten, D., Schrauwen, B., d’ Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)CrossRefGoogle Scholar
  24. 24.
    Yekutieli, Y., Sagiv-Zohar, R., Aharonov, R., Engel, Y., Hochner, B., Flash, T.: Dynamic model of the octopus arm.I. biomechanics of the octopus reaching movement. J. Neurophysiol. 94, 1443–1458 (2005)CrossRefGoogle Scholar
  25. 25.
    Yekutieli, Y., Sagiv-Zohar, R., Aharonov, R., Engel, Y., Hochner, B., Flash, T.: Dynamic model of the octopus arm.II. control of reaching movements. J. Neurophysiol. 94, 1459–1468 (2005)CrossRefGoogle Scholar
  26. 26.
    Zhao, Q., Nakajima, K., Sumioka, H., Hauser, H., Pfeifer, R.: Spine dynamics as a computational resource in spine-driven quadruped locomotion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), pp. 1445–1451. IEEE (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Kobe UniversityKobeJapan
  2. 2.JST PRESTOKawaguchiJapan
  3. 3.The University of TokyoBunkyo-kuJapan
  4. 4.University of BristolBristolUK

Personalised recommendations