Genetically Engineering Cold Stress-Tolerant Crops: Approaches and Challenges

  • Rohit Joshi
  • Balwant Singh
  • Viswanathan Chinnusamy


Low temperature is a major environmental constraint in high-latitude and high-altitude regions that adversely affects global crop productivity. In response to low-temperature stress, many plant species exhibit various injury symptoms such as chlorosis, necrosis, and growth retardation and ultimately lethality. In contrast, cold stress-tolerant species survive and grow under low temperatures. An incremental improvement in low-temperature stress tolerance is required to develop high-yielding cultivars of crops for enhancing agricultural productivity under low-temperature regimes. Low-temperature stress tolerance is a very complex phenomenon which involves cross talks between different development and stress response regulatory networks. Plants show differential responses toward low-temperature stress which is the result of orchestrated regulation of gene expression mediated by epigenetic, transcriptional, post-transcriptional, and post-translational mechanisms. Differential expression of cold-regulated (COR) genes under low temperatures is regulated by inducer of C-repeat binding factor expression (ICE)–CBF transcriptional pathway which is a major regulatory pathway of cold acclimation in diverse plant species. Small noncoding RNAs, viz., micro-RNAs (miRNAs) and small interfering RNAs (siRNAs), play significant role in post-transcriptional gene silencing. Progress in whole-genome and transcriptome sequencing, functional genomics, and QTLs mapping in diverse crops have provided deep insight into the complex mechanisms of cold acclimation and freezing tolerance. Conventional breeding methods showed limited success in improving cold stress tolerance in different crops through interspecific or intergeneric hybridization. This chapter covers recent advances in plant genomics that lead to the identification of various regulatory networks of low-temperature stress tolerance and highlights the progress of genetic engineering approach in designing cold-tolerant and economically important crops.



Rohit Joshi acknowledges the Dr. DS Kothari Postdoctoral Fellowship from the University Grant Commission, Government of India.


  1. Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281(49):37636–37645PubMedCrossRefPubMedCentralGoogle Scholar
  2. Banerjee A, Roychoudhury A (2017) Epigenetic regulation during salinity and drought stress in plants: histone modifications and DNA methylation. Plant Gene 11:199–204CrossRefGoogle Scholar
  3. Banerjee A, Wani SH, Roychoudhury A (2017) Epigenetic control of plant cold responses. Front Plant Sci 8:1643PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baumann K (2017) Stress responses: membrane-to-nucleus signals modulate plant cold tolerance. Nat Rev Mol Cell Biol 18(5):276–277PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bouchabke-Coussa O, Quashie ML, Seoane-Redondo J, Fortabat MN, Gery C, Yu A, Linderme D, Trouverie J, Granier F, Téoulé E, Durand-Tardif M (2008) ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance. BMC Plant Biol 8(1):125PubMedPubMedCentralCrossRefGoogle Scholar
  6. Catala R (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell Online 15(12):2940–2951CrossRefGoogle Scholar
  7. Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417(2):892–896PubMedCrossRefGoogle Scholar
  8. Chen H, Chen X, Chen D, Li J, Zhang Y, Wang A (2015) A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. BMC Plant Biol 15(1):132PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen L, Wang L, Wang H, Sun R, You L, Zheng Y, Yuan Y, Li D (2018) Identification and characterization of a plastidial ω -3 fatty acid desaturase EgFAD8 from oil palm (Elaeis guineensis Jacq.) and its promoter response to light and low temperature. PLoS One 13(4):e0196693PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451CrossRefGoogle Scholar
  11. Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. In: Plant stress tolerance. Humana Press, New York, pp 39–55CrossRefGoogle Scholar
  12. Crimp SJ, Zheng B, Khimashia N, Gobbett DL, Chapman S, Howden M, Nicholls N (2016) Recent changes in southern Australian frost occurrence: implications for wheat production risk. Crop Pasture Sci 67(8):801–811CrossRefGoogle Scholar
  13. De Palma M, Grillo S, Massarelli I, Costa A, Balogh G, Vigh L, Leone A (2008) Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants. Mol Breed 21(1):15–26CrossRefGoogle Scholar
  14. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell Online 21(3):972–984CrossRefGoogle Scholar
  15. Dong CH, Hu X, Tang W, Zheng X, Kim YS, Lee BH, Zhu JK (2006) A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mol Cell Biol 26(24):9533–9543PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dong CJ, Cao N, Zhang ZG, Shang QM (2016) Characterization of the fatty acid desaturase genes in cucumber: structure, phylogeny, and expression patterns. PLoS One 11(3):e0149917PubMedPubMedCentralCrossRefGoogle Scholar
  17. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690PubMedPubMedCentralCrossRefGoogle Scholar
  18. Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99(25):15898–15903PubMedCrossRefGoogle Scholar
  19. Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C, Zhu J (2013) A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 1:tpc-112Google Scholar
  20. Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217(2):290–298PubMedPubMedCentralGoogle Scholar
  21. Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2(5):381–387PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002a) Heterology expression of the ArabidopsisC-repeat/dehydration response element binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant physiology, 129(3):1086–1094PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hsieh TH, Lee JT, Charng YY, Chan MT (2002b) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiology, 130(2):618–626PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hu Y, Zhang L, Zhao L, Li J, He S, Zhou K, Yang F, Huang M, Jiang L, Li L (2011) Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS One 6(7):e22132PubMedPubMedCentralCrossRefGoogle Scholar
  25. Huang CK, Shen YL, Huang LF, Wu SJ, Yeh CH, Lu CA (2016) The DEAD-box RNA helicase AtRH7/PRH75 participates in pre-rRNA processing, plant development and cold tolerance in Arabidopsis. Plant Cell Physiol 57(1):174–191PubMedCrossRefPubMedCentralGoogle Scholar
  26. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106PubMedCrossRefPubMedCentralGoogle Scholar
  27. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Do Choi Y, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131(2):516–524PubMedPubMedCentralCrossRefGoogle Scholar
  28. Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature tolerance in plants: changes at the protein level. Phytochemistry 117:76–89PubMedPubMedCentralCrossRefGoogle Scholar
  29. Jha UC, Bohra A, Jha R (2017) Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Rep 36(1):1–35PubMedCrossRefPubMedCentralGoogle Scholar
  30. Ji H, Wang Y, Cloix C, Li K, Jenkins GI, Wang S, Shang Z, Shi Y, Yang S, Li X (2015) The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Genet 11(9):e1005471PubMedPubMedCentralCrossRefGoogle Scholar
  31. Jia Y, Ding Y, Shi Y, Zhang X, Gong Z, Yang S (2016) The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol 212(2):345–353PubMedCrossRefPubMedCentralGoogle Scholar
  32. Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, Zhu JK, Torii KU (2008) SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20(7):1775–1785PubMedPubMedCentralCrossRefGoogle Scholar
  34. Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Cult 103(2):267–277CrossRefGoogle Scholar
  35. Khodakovskaya M, McAvoy R, Peters J, Wu H, Li Y (2006) Enhanced cold tolerance in transgenic tobacco expressing a chloroplast ω -3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta 223(5):1090–1100PubMedCrossRefGoogle Scholar
  36. Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K (2015) Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81(3):505–518PubMedCrossRefGoogle Scholar
  37. Kim YD (2016) Improved cold tolerance by transformation with soybean SCOF-1 gene in Populus alba. J Agric Life Sci 50(3):43–53CrossRefGoogle Scholar
  38. Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H (2006) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35(2):506–516PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75(3):364–376PubMedCrossRefGoogle Scholar
  40. Kim YS, Lee M, Lee JH, Lee HJ, Park CM (2015) The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol Biol 89(1–2):187–201PubMedCrossRefGoogle Scholar
  41. Kim YH, Kim MD, Park SC, Jeong JC, Kwak SS, Lee HS (2016) Transgenic potato plants expressing the cold-inducible transcription factor SCOF-1 display enhanced tolerance to freezing stress. Plant Breed 135(4):513–518CrossRefGoogle Scholar
  42. Kim SH, Kim HS, Bahk S, An J, Yoo Y, Kim JY, Chung WS (2017) Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Res 45(11):6613–6627PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kobayashi F, Maeta E, Terashima A, Kawaura K, Ogihara Y, Takumi S (2008) Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J Exp Bot 59(4):891–905PubMedCrossRefGoogle Scholar
  44. Koc I, Filiz E, Tombuloglu H (2015) Assessment of miRNA expression profile and differential expression pattern of target genes in cold-tolerant and cold-sensitive tomato cultivars. Biotechnol Biotechnol Equip 29(5):851–860CrossRefGoogle Scholar
  45. Kovtum CWL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–3005CrossRefGoogle Scholar
  46. Kumar S, Malik J, Thakur P, Kaistha S, Sharma KD, Upadhyaya HD, Berger JD, Nayyar H (2011) Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta Physiol Plant 33:779–787CrossRefGoogle Scholar
  47. Lee H (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21(11):2692–2702PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee BH, Kapoor A, Zhu J, Zhu JK (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18(7):1736–1749PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lenka SK, Muthusamy SK, Chinnusamy V, Bansal KC (2018) Ectopic expression of rice PYL3 enhances cold and drought tolerance in Arabidopsis thaliana. Mol Biotechnol 1:1–2Google Scholar
  50. Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018PubMedCrossRefGoogle Scholar
  51. Liu Y, Zhou J (2018) MAPping kinase regulation of ICE1 in freezing tolerance. Trends Plant Sci 23(2):91–93PubMedCrossRefPubMedCentralGoogle Scholar
  52. Liu XY, Li B, Yang JH, Sui N, Yang XM, Meng QW (2008) Overexpression of tomato chloroplast omega-3 fatty acid desaturase gene alleviates the photoinhibition of photosystems 2 and 1 under chilling stress. Photosynthetica 46(2):185CrossRefGoogle Scholar
  53. Liu C, Wu Y, Wang X (2012) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235(6):1157–1169PubMedCrossRefGoogle Scholar
  54. Lopez MM, Makhatadze GI (2000) Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact differently with single-stranded DNA templates. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1479(1–2):196–202CrossRefGoogle Scholar
  55. Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160(6):1209–1221PubMedCrossRefPubMedCentralGoogle Scholar
  56. Maleki M, Ghorbanpour M (2018) Cold tolerance in plants: molecular machinery deciphered. In: Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Elsevier Science & Technology, San Diego, pp 57–71CrossRefGoogle Scholar
  57. Man L, Xiang D, Wang L, Zhang W, Wang X, Qi G (2017) Stress-responsive gene RsICE1 from Raphanus sativus increases cold tolerance in rice. Protoplasma 254(2):945–956PubMedCrossRefGoogle Scholar
  58. Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14(3):5312–5337PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zincfinger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 101:6309–6314PubMedPubMedCentralCrossRefGoogle Scholar
  60. Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi S, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713CrossRefGoogle Scholar
  61. Mzid R, Zorrig W, Ayed RB, Hamed KB, Ayadi M, Damak Y, Lauvergeat V, Hanana M (2018) The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum. 3 Biotech 8(6):277PubMedCrossRefGoogle Scholar
  62. Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T (2007) Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol 144(1):513–523PubMedPubMedCentralCrossRefGoogle Scholar
  63. Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461(3):205–210PubMedCrossRefGoogle Scholar
  64. Niu J, Wang J, Hu H, Chen Y, An J, Cai J, Sun R, Sheng Z, Liu X, Lin S (2016) Cross-talk between freezing response and signaling for regulatory transcriptions of MIR475b and its targets by miR475b promoter in Populus suaveolens. Sci Rep 6:20648PubMedPubMedCentralCrossRefGoogle Scholar
  65. Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci 104(52):21002–21007PubMedCrossRefGoogle Scholar
  66. Palusa SG, Ali GS, Reddy AS (2007) Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J 49(6):1091–1107PubMedCrossRefGoogle Scholar
  67. Park J, Lim CJ, Shen M, Park HJ, Cha JY, Iniesto E, Rubio V, Mengiste T, Zhu JK, Bressan RA, Lee SY (2018) Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proc Natl Acad Sci U S A 17:201721241Google Scholar
  68. Pennycooke JC, Jones ML, Stushnoff C (2003) Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiol 133(2):901–909PubMedPubMedCentralCrossRefGoogle Scholar
  69. Podgorska A, Ostaszewska M, Gardeström P, Rasmusson AG, SZAL B (2015) In comparison with nitrate nutrition, ammonium nutrition increases growth of the frostbite1 Arabidopsis mutant. Plant Cell Environ 38(1):224–237PubMedCrossRefGoogle Scholar
  70. Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991PubMedCrossRefGoogle Scholar
  71. Roy D, Paul A, Roy A, Ghosh R, Ganguly P, Chaudhuri S (2014) Differential acetylation of histone H3 at the regulatory region of OsDREB1b promoter facilitates chromatin remodelling and transcription activation during cold stress. PLoS One 9(6):e100343PubMedPubMedCentralCrossRefGoogle Scholar
  72. Sakamoto A, Valverde R, Chen TH, Murata N (2000) Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J 22(5):449–453PubMedCrossRefGoogle Scholar
  73. Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K, Endo T, Nagano K, Kojima M, Sakakibara H (2014) Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol 1:113Google Scholar
  74. Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12(1):30PubMedPubMedCentralCrossRefGoogle Scholar
  75. Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  76. Shabala S (ed) (2017) Plant stress physiology. CABI, BostonGoogle Scholar
  77. Shen Y, Wu X, Liu D, Song S, Liu D, Wang H (2016) Cold-dependent alternative splicing of a Jumonji C domain-containing gene MtJMJC5 in Medicago truncatula. Biochem Biophys Res Commun 474(2):271–276PubMedCrossRefGoogle Scholar
  78. Shi Y, Yang S (2014) ABA regulation of the cold stress response in plants. In: Abscisic acid: metabolism, transport and signaling. Springer, Dordrecht, pp 337–363Google Scholar
  79. Shi H, Qian Y, Tan DX, Reiter RJ, He C (2015) Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J Pineal Res 59(3):334–342PubMedCrossRefGoogle Scholar
  80. Shima S, Matsui H, Tahara S, Imai R (2007) Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J 274(5):1192–1201PubMedCrossRefGoogle Scholar
  81. Shu Y, Liu Y, Li W, Song L, Zhang J, Guo C (2016) Genome-wide investigation of MicroRNAs and their targets in response to freezing stress in Medicago sativa L, based on high-throughput sequencing. G3-Genes Genomes Genet 1:g3-115Google Scholar
  82. Singh R, Parihar P, Singh S, Singh MP, Singh VP, Prasad SM (2017) Micro RNAs and nitric oxide cross talk in stress tolerance in plants. Plant Growth Regul 83(2):199–205CrossRefGoogle Scholar
  83. Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153(1):145–158PubMedPubMedCentralCrossRefGoogle Scholar
  84. Tamminen I, Mäkelä P, Heino P, Palva ET (2001) Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. Plant J 25:1–8PubMedCrossRefGoogle Scholar
  85. Thiebaut F, Rojas CA, Almeida KL, Grativol C, Domiciano GC, Lamb CR, Engler JA, Hemerly AS, Ferreira PC (2012) Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35(3):502–512PubMedCrossRefGoogle Scholar
  86. Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127PubMedCrossRefGoogle Scholar
  87. Vaultier M-N, Cantrel C, Vergnolle C, Justin A-M, Demandre C, Benhassaine-Kesri G, Çiçek D, Zachowski A, Ruelland E (2006) Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in cells. FEBS Lett 580(17):4218–4223PubMedCrossRefGoogle Scholar
  88. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41(2):195–211PubMedCrossRefGoogle Scholar
  89. Wang Y-J, Zhang Z-G, He X-J, Zhou H-L, Wen Y-X, Dai J-X, Zhang J-S, Chen S-Y (2003) A rice transcription factor OsbHLH1 is involved in cold stress response. TAG Theor Appl Genet 107(8):1402–1409PubMedCrossRefGoogle Scholar
  90. Wang Z, Casas-Mollano JA, Xu J, Riethoven JJ, Zhang C, Cerutti H (2015) Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana. Proc Natl Acad Sci 19:201423325Google Scholar
  91. Wang DZ, Jin YN, Ding XH, Wang WJ, Zhai SS, Bai LP, Guo ZF (2017) Gene regulation and signal transduction in the ICE–CBF–COR signaling pathway during cold stress in plants. Biochem Mosc 82(10):1103–1117CrossRefGoogle Scholar
  92. Wani SH, Sah SK, Sanghera G, Hussain W, Singh NB (2016) Genetic engineering for cold stress tolerance in crop plants. Adv Genome Sci 4:173–201CrossRefGoogle Scholar
  93. Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M (2018) Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). Plant Mol Biol 97:469PubMedCrossRefPubMedCentralGoogle Scholar
  94. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(suppl 1):S165–S183PubMedPubMedCentralCrossRefGoogle Scholar
  95. Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 161(3):1517–1528PubMedPubMedCentralCrossRefGoogle Scholar
  96. Xu H, Yang G, Zhang J, Wang Y, Zhang T, Wang N, Jiang S, Zhang Z, Chen X (2018) Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus. Biochem Biophys Res Commun 500(2):405–410PubMedCrossRefPubMedCentralGoogle Scholar
  97. Yang C, Li D, Mao D, Liu XU, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013) Overexpression of micro RNA 319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36(12):2207–2218PubMedCrossRefPubMedCentralGoogle Scholar
  98. Yao P, Sun Z, Li C, Zhao X, Li M, Deng R, Huang Y, Zhao H, Chen H, Wu Q (2018) Overexpression of Fagopyrum tataricum FtbHLH2 enhances tolerance to cold stress in transgenic Arabidopsis. Plant Physiol Biochem 125:85–94PubMedCrossRefPubMedCentralGoogle Scholar
  99. Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol 136(1):2862–2874PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zhai H, Bai X, Zhu Y, Li Y, Cai H, Ji W, Ji Z, Liu X, Liu X, Li J (2010) A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. Biochem Biophys Res Commun 394:1018–1023PubMedCrossRefPubMedCentralGoogle Scholar
  101. Zhang YJ, Yang JS, Guo SJ, Meng JJ, Zhang YL, Wan SB, He QW, Li XG (2011) Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance. Plant Biol 13(2):362–367PubMedCrossRefPubMedCentralGoogle Scholar
  102. Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X (2014) Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14(1):271PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zhao X, Dolferuf R, Darvey N (2008) Precision breeding of cold tolerant rice. IREC Farm Newsl 177:12–13Google Scholar
  104. Zhao C, Lang Z, Zhu JK (2015a) Cold responsive gene transcription becomes more complex. Trends Plant Sci 20(8):466–468PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhao J, Zhang S, Yang T, Zeng Z, Huang Z, Liu Q, Wang X, Leach J, Leung H, Liu B (2015b) Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiol Plant 154(3):381–394PubMedCrossRefGoogle Scholar
  106. Zhao C, Zhang Z, Xie S, Si T, Li Y, Zhu JK (2016) Mutational evidence for the critical role of CBF genes in cold acclimation in Arabidopsis. Plant Physiol 1:00533Google Scholar
  107. Zhao Q, Xiang X, Liu D, Yang A, Wang Y (2018) Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Front Plant Sci 9:381PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6(5):486–503PubMedCrossRefPubMedCentralGoogle Scholar
  109. Zhu J, Verslues PE, Zheng X, Lee BH, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong CH, Zhu JK, Hasegawa PM (2005) HOS10 encodes an R2R3- type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci 102(28):9966–9971PubMedCrossRefPubMedCentralGoogle Scholar
  110. Zhu B, Xiong AS, Peng RH, Xu J, Jin XF, Memg XR, Quan-Hong Y (2010) Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. Mol Biol Rep 37:961–966PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rohit Joshi
    • 1
  • Balwant Singh
    • 2
  • Viswanathan Chinnusamy
    • 3
  1. 1.Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew DelhiIndia
  2. 2.ICAR-National Research Centre on Plant BiotechnologyNew DelhiIndia
  3. 3.Division of Plant Physiology, ICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations