Advertisement

Precision Medicine: Disruptive Technology in the Modern Hospital

  • Michael J. DemeureEmail author

Abstract

Precision medicine is coming. The application of genomic technologies to the diagnosis and treatment of diseases is becoming a reality for virtually every field of medicine. The promise is better outcomes for patients at ultimately lower costs for the payers. The technology is disruptive, so the challenge for doctors and other healthcare providers is to learn how to best use precision medicine. Payers have to develop policies for reimbursement, and hospitals must provide the infrastructure for the best use of the genomic technologies and related informatics.

Keywords

Precision medicine Genetics Genomics in medicine Personalized medicine Cancer DNA testing Genome analysis Exome 

References

  1. 1.
    Solomon BJ, Mok T, Kim D-W, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371:2167–77.CrossRefGoogle Scholar
  2. 2.
    Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287:1690–8.CrossRefGoogle Scholar
  3. 3.
    Rieder MJ, Reiner AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352:2285–93.CrossRefGoogle Scholar
  4. 4.
    Shehab N, Sperling LS, Kegler SR, Budnitz DS. National estimates of emergency department visits for hemorrhage-related adverse events from clopidogrel plus aspirin and from warfarin. Arch Intern Med. 2010;170:1926–33.CrossRefGoogle Scholar
  5. 5.
    Klein TE, et al. International warfarin pharmacogenomics consortium. Estimation of warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360:753–64.CrossRefGoogle Scholar
  6. 6.
    Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy – a genomewide study. N Engl J Med. 2008;359:789–99.CrossRefGoogle Scholar
  7. 7.
    Voora D, Ginsburg GS. Clinical application of cardiovascular pharmacogenetics. J Am Coll Cardiol. 2012;60:9–20.CrossRefGoogle Scholar
  8. 8.
    Kuntz TM, Gilbert JA. Introducing the microbiome into precision medicine. Trends Pharmacol Sci. 2017;38:81–91.CrossRefGoogle Scholar
  9. 9.
    Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31:69–75.CrossRefGoogle Scholar
  10. 10.
    Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res. 2013;69:21–31.CrossRefGoogle Scholar
  11. 11.
    Saad R, Rizkallah MR, Aziz RK. Gut pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathogens. 2012;4:16–29.CrossRefGoogle Scholar
  12. 12.
    Rizkallah MR, Gamal-Eldin S, Saad R, Aziz RK. The pharmacomicrobiomics portal: a database for drug-microbiome interactions. Curr Pharmacogenomics Person Med. 2012;10:195–203.CrossRefGoogle Scholar
  13. 13.
    Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–84.CrossRefGoogle Scholar
  14. 14.
    Duhigg C. How companies learn your secrets. New York Times magazine. Feb 16, 2012.Google Scholar
  15. 15.
    Levey DF, Niculescu EM, Le-Niculescu H, et al. Towards understanding and predicting suicidality in women: biomarkers and clinical risk assessment. Mol Psychiatry. 2016;21(6):768–85.CrossRefGoogle Scholar
  16. 16.
    Niculescu AB, Levey DF, Phalen PL, et al. Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach. Mol Psychiatry. 2015;20:1266–85.CrossRefGoogle Scholar
  17. 17.
    Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–30.CrossRefGoogle Scholar
  18. 18.
    Ballinger ML, Best A, Pai ML, et al. Baseline surveillance in li-Faumeni syndrome using whole-body magnetic resonance imaging: a meta-analysis. JAMA Oncol. 2017;3:1634.CrossRefGoogle Scholar
  19. 19.
    Bojadzieva J, Amini B, Day SF, et al. Whole body magnetic resonance imaging (WB-MRI) and brain MRI baseline surveillance in TP53 germline mutation carriers: experience from the Li-Fraumeni syndrome education and early detection (LEAD) clinic. Familial Cancer. 2018;17:287.  https://doi.org/10.1007/s10689-017-0034-6.
  20. 20.
    Dancey JE, Bedard PL, Onetto N, Hudson TJ. The genetic basis for cancer treatment decisions. Cell. 2012;148:409–20.CrossRefGoogle Scholar
  21. 21.
    Kuijer A, Straver M, den Dekker B, et al. Impact of 70-gene signature use on adjuvant chemotherapy decisions in patients with estrogen receptor–positive early breast cancer: results of a prospective cohort study. J Clin Oncol. 2017;35:2814–9.CrossRefGoogle Scholar
  22. 22.
    Loncaster J, Armstrong A, Howell S, et al. Impact of oncotype DX breast recurrence score testing on adjuvant chemotherapy use in early breast cancer: real world experience in greater Manchester, UK. Eur J Surg Oncol. 2017;43:931–7.CrossRefGoogle Scholar
  23. 23.
    Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311:1998–2006.CrossRefGoogle Scholar
  24. 24.
    Ramalingam SS, Yang JCH, Lee CK, et al. Osimertinib as first-line treatment of EGFR mutation–positive advanced non–small-cell lung cancer. J Clin Oncol. 2017;36(9):841–9. Epub ahead of print.Google Scholar
  25. 25.
    Von Hoff DD, Stephenson JJ Jr, Rosen P, Loesch DM, Borad MJ, Anthony S, et al. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol. 2010;28(33):4877–83.  https://doi.org/10.1200/JCO.2009.26.5983.CrossRefGoogle Scholar
  26. 26.
    Kato S, Kurasaki K, Ikeda S, Kurzrock R. Rare tumor clinic: the University of san Diego Moores Cancer Center experience with a precision therapy approach. Oncologist. 2018;23:171–8.CrossRefGoogle Scholar
  27. 27.
    Greenlee RT, Goodman MT, Lynch CF, et al. The occurrence of rare cancers in U.S. adults, 1995-2004. Public Health Rep. 2010;125:28–43.CrossRefGoogle Scholar
  28. 28.
    Schwaederle M, Zhao M, Lee JJ, et al. Impact of precision medicine in diverse cancers: a meta-analysis of phase II clinical trials. J Clin Oncol. 2015;33:3817–25.CrossRefGoogle Scholar
  29. 29.
  30. 30.
  31. 31.
    Huang Y, Yu S, Wu Z, Tang B. Genetics of hereditary neurologic disorders in children. Transl Pediatr. 2014;3:108–19.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Escott-Price V, Shoai M, Pither R, Williams J. Polygenic score prediction captures nearly all common genetic risk for Alzheimer’s disease. Neurobiol Aging. 2017;49:214.e7–11.CrossRefGoogle Scholar
  33. 33.
    Crous-Bou M, Minguillon C, Gramunt N, Molinuevo JL. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther. 2017;9:71–80.CrossRefGoogle Scholar
  34. 34.
    Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell. 2012;148:1242–57.CrossRefGoogle Scholar
  35. 35.
    Superti-Furga A, Gugler E, Gitzelmann R, Steinmann B. Ehlers-Danlos syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen. J Biol Chem. 1988;263:6226–32.PubMedGoogle Scholar
  36. 36.
    Boyden LM, Choi M, Choate KA, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482:98–102.CrossRefGoogle Scholar
  37. 37.
    Glover M, Ware JS, Henry A, et al. Detection of mutations in KLHL3 and CUL3 in families with FHHt (familial hyperkalaemic hypertension or Gordon’s syndrome). Clin Sci (Lond). 2014;126:721–6.CrossRefGoogle Scholar
  38. 38.
    Norton N, Li D, Rieder MJ, et al. Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am J Hum Genet. 2011;88:273–82.CrossRefGoogle Scholar
  39. 39.
    Patel CJ, Sivadas A, Tabassum R, et al. Whole genome sequencing in support of wellness and health maintenance. Genome Med. 2013;5:58–61.CrossRefGoogle Scholar
  40. 40.
    Price ND, Magis AT, Earls JC, et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat Biotech. 2017;35:747–56.CrossRefGoogle Scholar
  41. 41.
    Sitapati A, Kim H, Berkovich B, et al. Integrated precision medicine: the role of electronic health records in delivering personalized treatment. WIREs Syst Biol Med. 2017;9:e1378.  https://doi.org/10.1002/wsbm.1378.CrossRefGoogle Scholar
  42. 42.
    Carey DJ, Fetterolf SN, Davis FD, et al. The Geisinger MyCode community health initiative: an electronic health record-linked biobank for precision medicine research. Genet Med. 2016;18:906–13.  https://doi.org/10.1038/gim.2015.187.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Blumenthal D. Lauching HITECH. N Engl J Med. 2010;362:382–5.CrossRefGoogle Scholar
  44. 44.
    Waldren S, Kibbe D, Mitchell J. “Will the feds really buy me an EHR?” and other commonly asked questions about the HITECH Act. Fam Pract Manag. 2009;16:19–23.PubMedGoogle Scholar
  45. 45.
    Davis J. Providers say they’re ready to progress to precision medicine. Healthcare IT News. May 2016. Retrieved from: http://www.healthcareitnews.com/news/providers-say-theyre-ready-progress-precision-medicine.
  46. 46.
    Kurian AW, Li Y, Hamilton AS, et al. Gaps in incorporating germline genetic testing into treatment decision-making for early-stage breast cancer. J Clin Oncol. 2017;35:2232–9.CrossRefGoogle Scholar
  47. 47.
    Hoskovec JM, Bennett RL, Carey ME, et al. Projecting the supply and demand for certified genetic counselors: a workforce study. J Genetic Couns. 2017;27:16.  https://doi.org/10.1007/s10897-017-0158-8.CrossRefGoogle Scholar
  48. 48.
    Vassy JL, Christensen KD, Schonman EF, et al. The impact of whole-genome sequencing on primary care and outcomes of healthy adult patients. Ann Intern Med. 2017;167:159–69.CrossRefGoogle Scholar
  49. 49.
    Hughes KS. Genetic testing: what problem are we trying to solve? J Clin Oncol. 2017;35:3789–92.CrossRefGoogle Scholar
  50. 50.
    Whitworth P, Beitsch P, Arnell C, et al. Impact of payer constraints on access to genetic counseling. J Oncol Pract. 2017;13:e47–56.CrossRefGoogle Scholar
  51. 51.
    Childers CP, Childers KK, Maggard-Gibbons M, et al. National estimates of genetic testing in women with a history of breast cancer or ovarian cancer. J Clin Oncol. 2017;35:3800–6.CrossRefGoogle Scholar
  52. 52.
    Merchant GE, Lindor RA. Personalized medicine and genetic malpractice. Genet Med. 2013;15:921–2.  https://doi.org/10.1038/gim.2013.142.CrossRefGoogle Scholar
  53. 53.
    Downs v Trias, 49 A.3d 180 (Conn. 2012).Google Scholar
  54. 54.
    Real-world precision medicine: challenges and opportunities in hospitals across the US in Becker’s Hospital review. June 12, 2017.Google Scholar
  55. 55.
    Elliott LS, Henderson JC, Neradilek MB, et al. Clinical impact of pharmacogenomics profiling with a clinical decision support tool in polypharmacy home health patients: a prospective pilot randomized controlled trial. PLoS One. 2017;12:1–16.  https://doi.org/10.1371/journal.pone.0170905.CrossRefGoogle Scholar
  56. 56.
    Haslem DS, Van Norman SB, Fulde G, et al. A retrospective analysis of precision medicine outcomes in patients with advanced cancer reveals improved progression free survival without increased health care costs. J Oncol Pract. 2017;13:e108–19.CrossRefGoogle Scholar
  57. 57.
    Moore GA. Crossing the chasm: marketing and selling disruptive products to mainstream customers. 3rd ed. New York: Harper Collins; 2014.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hoag Family Cancer Institute, Hoag Memorial Hospital PresbyterianNewport BeachUSA
  2. 2.Translational Genomics Research InstitutePhoenixUSA

Personalised recommendations