Markerless Ad-Hoc Calibration of a Hyperspectral Camera and a 3D Laser Scanner

  • Felix IgelbrinkEmail author
  • Thomas Wiemann
  • Sebastian Pütz
  • Joachim Hertzberg
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 867)


Integrating 3D data with hyperspectral images opens up novel approaches for several robotic tasks. To that end, we register hyperspectral panoramas to cylindrically projected laser scans. With our approach, the required calibration can be done on board a mobile robot without the need of external markers using Mutual Information. Qualitative results show the robustness of the presented approach, and an application example demonstrates possible future applications for hyperspectral point clouds.


Mobile robot 3D laser scanning Hyperspectral data Image registration 


  1. 1.
    Buckley, S., Kurz, T., Howell, J., Schneider, D.: Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis. Comput. Geosci. 54, 249–258 (2013)CrossRefGoogle Scholar
  2. 2.
    Luhmann, T., Robson, S., Kyle, S., Harley, I.: Photogram. Rec. Close Range Photogrammetry: Principles, Methods And Applications 25, 203–204 (2010)Google Scholar
  3. 3.
    Nieto, J., Monteiro, S., Viejo, D.: 3D geological modelling using laser and hyperspectral data. In: 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4568–4571. IEEE (2010)Google Scholar
  4. 4.
    Pandey, G., McBride, J., Savarese, S., Eustice, R.: Automatic extrinsic calibration of vision and lidar by maximizing mutual information. J. Field Robot. 32(5), 696–722 (2015)CrossRefGoogle Scholar
  5. 5.
    Schneider, D., Maas, H.: A geometric model for linear-array-based terrestrial panoramic cameras. Photogram. Rec. 21(115), 198–210 (2006)CrossRefGoogle Scholar
  6. 6.
    Shannon, C.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sima, A., Buckley, S., Kurz, T., Schneider, D.: Semi-automated registration of close-range hyperspectral scans using oriented digital camera imagery and a 3D model. Photogram. Rec. 29(145), 10–29 (2014)CrossRefGoogle Scholar
  8. 8.
    Studholme, C., Hill, D., Hawkes, D.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recogn. 32(1), 71–86 (1999)CrossRefGoogle Scholar
  9. 9.
    Taylor, Z., Nieto, J.: A mutual information approach to automatic calibration of camera and Lidar in natural environments. In: Australian Conference on Robotics and Automation, pp. 3–5 (2012)Google Scholar
  10. 10.
    Wiemann, T., Annuth, H., Lingemann, K., Hertzberg, J.: An extended evaluation of open source surface reconstruction software for robotic applications. J. Intell. Robot. Syst. 77(1), 149–170 (2015)CrossRefGoogle Scholar
  11. 11.
    Xu, R., Chen, Y., Tang, S., Morikawa, S., Kurumi, Y.: Parzen-window based normalized mutual information for medical image registration. IEICE Trans. Inf. Syst. 91(1), 132–144 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhang, Q., Pless, R.: Extrinsic calibration of a camera and laser range finder (improves camera calibration). In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS 2004), vol. 3, pp. 2301–2306. IEEE (2004)Google Scholar
  13. 13.
    Zhang, X., Zhang, A., Meng, X.: Automatic fusion of hyperspectral images and laser scans using feature points. J. Sens. 1–9, 2015 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Felix Igelbrink
    • 1
    Email author
  • Thomas Wiemann
    • 1
  • Sebastian Pütz
    • 1
  • Joachim Hertzberg
    • 1
    • 2
  1. 1.Knowledge Based Systems GroupOsnabrück UniversityOsnabrückGermany
  2. 2.DFKI Robotics Innovation Center, Osnabrück BranchOsnabrückGermany

Personalised recommendations