Force Sensing for Multi-point Contact Using a Constrained, Passive Joint Based on the Moment-Equivalent Point

  • Shouhei ShirafujiEmail author
  • Jun Ota
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 867)


In this paper, an analyzing method of a constrained joint using the Moment-Equivalent Point (MEP) is introduced that represents the balance between the torques exerted by two end joints in a robotic manipulator and the torque created by multiple-point contact of the flat surface that is in contact with the environment. By construction, the vector representing the summed reactive forces on the center of pressure (CoP) will always pass through the MEP. An important characteristic of the MEP is that it is fixed with respect to the link connecting the two joints if the ratio of the torques exerted at each joint is held constant. Therefore, if the robot has two passive joints that are mechanically constrained such that the ratio of the torques at each joint is constant, the MEP can be treated a single-contact point. Thus, we can model the robot’s behavior as if contacts only with a point on MEP in the environment, even if the actual contact is over multiple points on the flat surface. Such mechanically constrained passive joints and the concept of the MEP result in an approach that is midway between the standard multi-point contact and standard single-point contact in terms of the contact kinematics. One advantage of considering the balance of forces between the robot and the environment based on the MEP is that the tangential force applied to the contact surface can be calculated just from the CoP position and the normal force at the CoP. Experimental results indicate that the tangential force at the foot of the robot can be estimated by measuring only the normal forces applied at the foot.


Force sensing Passive joint Moment-equivalent point 


  1. 1.
    Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile sensing: from humans to humanoids. IEEE Trans. Rob. 26(1), 1–20 (2010)CrossRefGoogle Scholar
  2. 2.
    Stassi, S., Cauda, V., Canavese, G., Pirri, C.F.: Flexible tactile sensing based on piezoresistive composites: a review. Sensors 14(3), 5296–5332 (2014)CrossRefGoogle Scholar
  3. 3.
    Ahmed, M., Chitteboyina, M.M., Butler, D.P., Çelik-Butler, Z.: Mems force sensor in a flexible substrate using nichrome piezoresistors. IEEE Sens. J. 13(10), 4081–4089 (2013)CrossRefGoogle Scholar
  4. 4.
    Salisbury, J.: Interpretation of contact geometries from force measurements. In: IEEE International Conference on Robotics and Automation, Proceedings, vol. 1, pp. 240–247. IEEE (1984)Google Scholar
  5. 5.
    Bicchi, A., Salisbury, J.K., Brock, D.L.: Contact sensing from force measurements. Int. J. Rob. Res. 12(3), 249–262 (1993)CrossRefGoogle Scholar
  6. 6.
    Suzuki, Y.: Multilayered center-of-pressure sensors for robot fingertips and adaptive feedback control. IEEE Rob. Autom. Lett. 2(4), 2180–2187 (2017)CrossRefGoogle Scholar
  7. 7.
    Vukobratović, M., Stepanenko, J.: On the stability of anthropomorphic systems. Math. Biosci. 15(1), 1–37 (1972)CrossRefGoogle Scholar
  8. 8.
    Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Rob. Res. 18(6), 523–533 (1999)CrossRefGoogle Scholar
  9. 9.
    Nagasaka, K., Inoue, H., Inaba, M.: Dynamic walking pattern generation for a humanoid robot based on optimal gradient method. In: IEEE International Conference on Systems, Man, and Cybernetics, IEEE SMC 1999 Conference Proceedings, vol. 6, pp. 908–913. IEEE (1999)Google Scholar
  10. 10.
    Sugihara, T., Nakamura, Y., Inoue, H.: Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2002, vol. 2, pp. 1404–1409. IEEE (2002)Google Scholar
  11. 11.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2003, vol. 2, pp. 1620–1626. IEEE (2003)Google Scholar
  12. 12.
    Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of honda humanoid robot. In: IEEE International Conference on Robotics and Automation, Proceedings, vol. 2, pp. 1321–1326. IEEE (1998)Google Scholar
  13. 13.
    Choi, Y., Kim, D., You, B.-J.: On the walking control for humanoid robot based on the kinematic resolution of CoM Jacobian with embedded motion. In: IEEE International Conference on Robotics and Automation, ICRA 2006, Proceedings, pp. 2655–2660. IEEE (2006)Google Scholar
  14. 14.
    Kajita, S., Morisawa, M., Miura, K., Nakaoka, S., Harada, K., Kaneko, K., Kanehiro, F., Yokoi, K.: Biped walking stabilization based on linear inverted pendulum tracking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4489–4496. IEEE (2010)Google Scholar
  15. 15.
    Hirose, M., Ogawa, K.: Honda humanoid robots development. Philos. Trans. R. Soc. London A: Mathe. Phys. Eng. Sci. 365(1850), 11–19 (2007)CrossRefGoogle Scholar
  16. 16.
    Hirukawa, H., Kanehiro, F., Kaneko, K., Kajita, S., Fujiwara, K., Kawai, Y., Tomita, F., Hirai, S., Tanie, K., Isozumi, T., et al.: Humanoid robotics platforms developed in HRP. Rob. Autonom. Syst. 48(4), 165–175 (2004)CrossRefGoogle Scholar
  17. 17.
    Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., Kajita, S., Kanehiro, F.: Development of humanoid robot HRP-3P. In: 5th IEEE-RAS International Conference on Humanoid Robots, pp. 50–55. IEEE (2005)Google Scholar
  18. 18.
    Kajita, S., Kaneko, K., Kaneiro, F., Harada, K., Morisawa, M., Nakaoka, S., Miura, K., Fujiwara, K., Neo, E., Hara, I., et al.: Cybernetic human HRP-4C: a humanoid robot with human-like proportions. In: Robotics Research, pp. 301–314 (2011)Google Scholar
  19. 19.
    Zucker, M., Joo, S., Grey, M.X., Rasmussen, C., Huang, E., Stilman, M., Bobick, A.: A general-purpose system for teleoperation of the DRC-HUBO humanoid robot. J. Field Rob. 32(3), 336–351 (2015)CrossRefGoogle Scholar
  20. 20.
    Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)zbMATHGoogle Scholar
  21. 21.
    Tsai, L.W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)Google Scholar
  22. 22.
    Ozawa, R., Kobayashi, H., Hashirii, K.: Analysis, classification, and design of tendon-driven mechanisms. IEEE Trans. Rob. 30(2), 396–410 (2014)CrossRefGoogle Scholar
  23. 23.
    Shirafuji, S., Ikemoto, S., Hosoda, K.: Development of a tendon-driven robotic finger for an anthropomorphic robotic hand. Int. J. Rob. Res. 33(5), 677–693 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research into Artifacts, Center for EngineeringThe University of TokyoKashiwa-shi, ChibaJapan

Personalised recommendations