Advertisement

Method for Robot to Create New Function by Uniting with Surrounding Objects

  • Yukio MorookaEmail author
  • Ikuo Mizuuchi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 867)

Abstract

In this paper, we propose a robot that creates new functions by uniting with other objects. Such a robot can be applied to various situations by creating functions that fit to the situations. In this paper, we describe the elements of the proposed robot and development of two types of prototypes. The first prototype has an uniting function by gripping objects, and we conducted a demonstration of creating an automatic angle adjustment function on a projector using this prototype. The second prototype has an uniting function by using electromagnets and we conducted demonstrations of creating a function to handle object on a high place and creating automatic open and close functions for a door using this prototype.

Keywords

Function creation Uniting Modular robotics Multipurpose robot 

References

  1. 1.
    Boxerbaum, A.S., Werk, P., Quinn, R.D., Vaidyanathan, R.: Design of an autonomous amphibious robot for surf zone operation: part i mechanical design for multi-mode mobility. In: Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronicsm, pp. 1459–1464, July 2005Google Scholar
  2. 2.
    Chirikjian, G.S., Burdick, J.W.: Design and experiments with a 30 DoF robot. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 113–119, vol. 3, May 1993Google Scholar
  3. 3.
    Fukuda, T., Nakagawa, S.: Approach to the dynamically reconfigurable robotic system. J. Intell. Robot. Syst. 1(1), 55–72 (1988)CrossRefGoogle Scholar
  4. 4.
    Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of honda humanoid robot. In: Proceedings, 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146). vol. 2, pp. 1321–1326, May 1998Google Scholar
  5. 5.
    Jorgensen, M.W., Ostergaard, E.H., Lund, H.H.: Modular ATRON: modules for a self-reconfigurable robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2004), vol. 2, pp. 2068–2073. IEEE (2004)Google Scholar
  6. 6.
    Kamimura, A., Kurokawa, H.: High-step climbing by a crawler robot DIR-2 - realization of automatic climbing motion. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 618–624, October 2009Google Scholar
  7. 7.
    Kato, I.: Development of WABOT-1. Biomechanism 2, 173–214 (1973)CrossRefGoogle Scholar
  8. 8.
    Levihn, M., Nishiwaki, K., Kagami, S., Stilman, M.: Autonomous environment manipulation to assist humanoid locomotion. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4633–4638, May 2014Google Scholar
  9. 9.
    Lyder, A., Garcia, R.F.M., Stoy, K.: Mechanical design of odin, an extendable heterogeneous deformable modular robot. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 883–888, September 2008Google Scholar
  10. 10.
    Mizuuchi, I., Waita, H., Nakanishi, Y., Yoshikai, T., Inaba, M., Inoue, H.: Design and implementation of reinforceable muscle humanoid. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2004), vol. 1, pp. 823–833 (2004)Google Scholar
  11. 11.
    Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D., Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: a new distributed robotic concept. Auton. Robots 17(2–3), 193–221 (2004)CrossRefGoogle Scholar
  12. 12.
    Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)CrossRefGoogle Scholar
  13. 13.
    O’Flaherty, R., Vieira, P., Grey, M.X., Oh, P., Bobick, A., Egerstedt, M., Stilman, M.: Humanoid robot teleoperation for tasks with power tools. In: Proceedings of IEEE International Conference on Technologies for Practical Robot Applications, pp. 1–6. IEEE (2013)Google Scholar
  14. 14.
    Waldron, K., McGhee, R.: The adaptive suspension vehicle. IEEE Control Syst. Mag. 6(6), 7–12 (1986)CrossRefGoogle Scholar
  15. 15.
    Wright, C., Buchan, A., Brown, B., Geist, J., Schwerin, M., Rollinson, D., Tesch, M., Choset, H.: Design and architecture of the unified modular snake robot. In: 2012 IEEE International Conference on Robotics and Automation, pp. 4347–4354, May 2012Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations