Advertisement

Vibrational Spectroscopy in Analysis of Stimuli-Responsive Polymer–Water Systems

  • Marcin Kozanecki
  • Marcin Pastorczak
  • Krzysztof Halagan
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)

Abstract

Over the last years, a rapid development in the material science, which is an answer to an increasing demand for functional, smart systems, has taken place. The recent progress in design, synthesis and characterization of stimuli-responsive polymer systems (SRPS) fits in this trend very well. However, extensive experiments, simulations as well as theoretical works are still conducted to deepen the knowledge about these systems, their complexity and diversity result in still insufficient understanding of some crucial phenomena. One of them is intermolecular interactions which change during swelling/deswelling processes, phase transitions (commonly leading to the phase separation) and loading or a release of various additives. Since the vibrational spectroscopy is considered to be the most powerful tool to study molecular interactions, this chapter presents various aspects related to the usage of vibrational spectroscopy in the field of SRPS.

Notes

Acknowledgements

The authors acknowledge the financial support within the projects granted by National Science Centre, Poland: No. 2013/09/B/ST4/03010 (MK), No. 2014/14/A/ST5/00204 (KH, MK), No. DEC-2013/08/S/ST4/00556 (MP) and UMO-2015/17/B/ST4/04035 (MP). Special thanks to Prof. Jacek Ulanski and Prof. Piotr Polanowski from the Department of Molecular Physics for long and fruitful discussions. Also, the authors would like to acknowledge Prof. Piotr Ulanski and Prof. Slawomir Kadlubowski from the Institute of Applied Radiation Chemistry at Lodz University of Technology for everyday support and cooperation.

References

  1. 1.
    Cabane E, Zhang X, Langowska K, Palivan CG, Meier W (2012) Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 7:9PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222CrossRefGoogle Scholar
  3. 3.
    Delcea M, Mohwald H, Skirtach AG (2011) Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev 63:730–747PubMedCrossRefGoogle Scholar
  4. 4.
    Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wei M, Gao Y, Li X, Serpe MJ (2017) Stimuli-responsive polymers and their applications. Polym Chem 8:127–143CrossRefGoogle Scholar
  7. 7.
    Hu J, Meng H, Li G, Ibekwe SI (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21:053001CrossRefGoogle Scholar
  8. 8.
    Gao Y, Wei M, Li X, Xu W, Ahiabu A, Perdiz J, Liu Z, Serpe MJ (2017) Stimuli-responsive polymers: fundamental considerations and applications. Macromol Res 25:513–527CrossRefGoogle Scholar
  9. 9.
    Štular D, Simončič B, Tomšič B (2017) Stimuli-responsive hydrogels for textile functionalisation: a review. Tekstilec 60(2):76–96CrossRefGoogle Scholar
  10. 10.
    Ito S (1989) Phase transition of aqueous solution of poly (N-alkylacrylamide) derivatives-effects of side chain structure. Kobunshi Ronbunshu 46(7):437–443CrossRefGoogle Scholar
  11. 11.
    Ito S (1990) Phase transition of aqueous solutions of poly (N-alkoxyalkylacrylamide) derivatives effects of side chain structure. Kobunshi Ronbunshu 47(6):467–474CrossRefGoogle Scholar
  12. 12.
    Suwa K, Morishita K, Kishida A, Akashi M (1997) Synthesis and functionalities of poly(N-vinylalkylamide). V. Control of a lower critical solution temperature of poly(N-vinylalkylamide). J Polym Sci A 35:3087–3094CrossRefGoogle Scholar
  13. 13.
    Lutz JF (2008) Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J Polym Sci A 46:3459–3470CrossRefGoogle Scholar
  14. 14.
    Roth PJ, Jochum FD, Forst FR, Zentel R, Theato P (2010) Influence of end groups on the stimulus-responsive behavior of poly[oligo(ethylene glycol) methacrylate] in water. Macromolecules 43:4638–4645CrossRefGoogle Scholar
  15. 15.
    Kojima C (2010) Design of stimuli-responsive dendrimers. Expert Opin Drug Deliv 7:307–319PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Haba Y, Harada A, Takagishi T, Kono K (2004) Rendering poly(amidoamine) or poly(propylenimine) dendrimers temperature sensitive. JACS 126:12760–12761CrossRefGoogle Scholar
  17. 17.
    Haba Y, Kojima C, Harada A, Kono K (2007) Comparison of thermosensitive properties of poly(amidoamine) dendrimers with peripheral N-isopropylamide groups and linear polymers with the same groups. Angew Chem Int Ed 46:234–237CrossRefGoogle Scholar
  18. 18.
    Li W, Zhang A, Chen Y, Feldman K, Wud H, Schlüter D (2008) Low toxic, thermoresponsive dendrimers based on oligoethylene glycols with sharp and fully reversible phase transitions. Chem Commun 2008:5948–5950CrossRefGoogle Scholar
  19. 19.
    Parrott MC, Marchington EB, Valliant JF, Adronov A (2005) Synthesis and properties of carborane-functionalized aliphatic polyester dendrimers. JACS 127:12081–12089CrossRefGoogle Scholar
  20. 20.
    Pistolis G, Malliaris A, Tsiourvas D, Paleos CM (1999) Poly(propyleneimine) dendrimers as pH-sensitive controlled-release systems. Chem Eur J 5:1440–1444CrossRefGoogle Scholar
  21. 21.
    Sideratou Z, Tsiourvas D, Paleos CM (2000) Quaternized poly(propylene imine) dendrimers as novel pH-sensitive controlled-release systems. Langmuir 16:1766–1769CrossRefGoogle Scholar
  22. 22.
    Sideratou Z, Tsiourvas D, Paleos CM (2001) Solubilization and release properties of PEGylated diaminobutane poly(propylene imine) dendrimers. J Colloid Interface Sci 242:272–276CrossRefGoogle Scholar
  23. 23.
    Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka L (2004) Acid- and salt-triggered multifunctional poly(propylene imine) dendrimer as a prospective drug delivery system. Biomacromol 5:524–529CrossRefGoogle Scholar
  24. 24.
    Kimura M, Kato M, Muto T, Hanabusa K, Shirai H (2000) Temperature-sensitive dendritic hosts: synthesis, characterization, and control of catalytic activity. Macromolecules 33:1117–1119CrossRefGoogle Scholar
  25. 25.
    You YZ, Hong CY, Pan CY, Wang PH (2004) Synthesis of a dendritic core–shell nanostructure with a temperature-sensitive. Shell Adv Mater 16:1953–1957CrossRefGoogle Scholar
  26. 26.
    Xu J, Luo S, Shi W, Liu S (2006) Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir 22:989–997PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Yang Z, Zhang W, Zou J, Shi W (2007) Synthesis and thermally responsive characteristics of dendritic poly(ether-amide) grafting with PNIPAAm and PEG. Polymer 48:931–938CrossRefGoogle Scholar
  28. 28.
    Lee HI, Lee JA, Poon Z, Hammond PT (2008) Temperature-triggered reversible micellar self-assembly of linear–dendritic block copolymers. Chem Commun 2008:3726–3728CrossRefGoogle Scholar
  29. 29.
    Plummer R, Hill DTJ, Whittaker AK (2006) Solution properties of star and linear poly(N-isopropylacrylamide). Macromolecules 39:8379–8388CrossRefGoogle Scholar
  30. 30.
    Xu J, Liu S (2009) Synthesis of well-defined 7-arm and 21-arm poly(N-isopropylacrylamide) star polymers with β-cyclodextrin cores via click chemistry and their thermal phase transition behavior in aqueous solution. J Polym Sci A 47:404–419CrossRefGoogle Scholar
  31. 31.
    Liu YY, Zhong YB, Nan JK, Tian W (2010) Star polymers with both temperature sensitivity and inclusion functionalities. Macromolecules 43:10221–10230CrossRefGoogle Scholar
  32. 32.
    Lambeth RH, Ramakrishnan S, Mueller R, Poziemski JP, Miguel GS, Markoski LJ, Zukoski CF, Moore JS (2006) Synthesis and aggregation behavior of thermally responsive star polymers. Langmuir 22:6352–6360PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ni C, Wu G, Zhu C, Yao B (2010) The preparation and characterization of amphiphilic star block copolymer nano micelles using silsesquioxane as the core. J Phys Chem C 114:13471–13476CrossRefGoogle Scholar
  34. 34.
    Bai Y, Wei J, Yang L, He C, Lu X (2012) Temperature and pH dual-responsive behavior of polyhedral oligomeric silsesquioxane-based star-block copolymer with poly(acrylic acid-block-N-isopropylacrylamide) as arms. Colloid Polym Sci 290:507–515CrossRefGoogle Scholar
  35. 35.
    Zhu W, Nese A, Matyjaszewski K (2011) Thermoresponsive star triblock copolymers by combination of ROP and ATRP: from micelles to hydrogels. J Polym Sci A 49:1942–1952CrossRefGoogle Scholar
  36. 36.
    Guo Y, Li M, Li X, Shang Y, Liu H (2017) Stimuli-responsive and micellar behaviors of star-shaped poly[2-(dimethylamino)ethyl methacrylate]-b-poly[2-(2-methoxyethoxy)ethyl methacrylate] with a β-cyclodextrin core. React Funct Polym 116:77–86CrossRefGoogle Scholar
  37. 37.
    Das S, Chatterjee DP, Ghosh R, Das P, Nandi AK (2016) Water soluble stimuli-responsive star copolymers with multiple encapsulation and release properties. RSC Adv 6:8773–8785CrossRefGoogle Scholar
  38. 38.
    Kuckling D, Wycisk A (2013) Stimuli-responsive star polymers. Inc J Polym Sci A 51:2980–2994CrossRefGoogle Scholar
  39. 39.
    Huggins ML (1941) Solutions of long chain compounds. J Chem Phys 9:440CrossRefGoogle Scholar
  40. 40.
    Flory PJ (1941) Thermodynamics of high polymer solutions. J Chem Phys 9:660–661CrossRefGoogle Scholar
  41. 41.
    Flory PJ (1941) Molecular size distribution in three dimensional polymers. I. Gelation. JACS 63:3083–3090CrossRefGoogle Scholar
  42. 42.
    Flory PJ (1941) Molecular size distribution in three dimensional polymers. II. Trifunctional branching units. JACS 63:3091–3096CrossRefGoogle Scholar
  43. 43.
    Flory PJ (1941) Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units. JACS 63:3096–3100CrossRefGoogle Scholar
  44. 44.
    Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–61CrossRefGoogle Scholar
  45. 45.
    Stockmayer WH (1944) Theory of molecular size distribution and gel formation in Branched polymers II. General cross linking. J Chem Phys 12:125–131CrossRefGoogle Scholar
  46. 46.
    Flory PJ, Krigbaum WR (1950) Statistical mechanics of dilute polymer solutions II. J Chem Phys 18:1086–1094CrossRefGoogle Scholar
  47. 47.
    Krigbaum WR, Flory PJ (1953) Statistical mechanics of dilute polymer solutions. IV. Variation of the osmotic second coefficient with molecular weight. JACS 75:1775–1784CrossRefGoogle Scholar
  48. 48.
    Stockmayer WH (1950) Light scattering in multi-component systems. J Chem Phys 18:58–61CrossRefGoogle Scholar
  49. 49.
    Stockmayer WH (1960) Problems of the statistical thermodynamics of dilute polymer solutions. Macromol Chem Phys 35:54–74CrossRefGoogle Scholar
  50. 50.
    Flory JP (1953) Principles in polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  51. 51.
    Yamakawa H (1971) Modern theory of polymer solutions 1971. Harper & Row Publishers, New YorkGoogle Scholar
  52. 52.
    Teraoka I (2002) Polymer solutions: an introduction to physical properties. Wiley, New YorkGoogle Scholar
  53. 53.
    de Grotthuss CJT (1806) Memoir on the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity. Ann Chim (Paris) 58:54–73 (Reprint in Eng de Grotthuss CJT Biochim Biophys Acta (2006) 1757:871–875)Google Scholar
  54. 54.
    Siwick BJ, Bakker HJ (2007) On the role of water in intermolecular proton-transfer reactions. JACS 129:13412–13420CrossRefGoogle Scholar
  55. 55.
    Imran AB, Seki T, Takeoka Y (2010) Recent advances in hydrogels in terms of fast stimuli responsiveness and superior mechanical performance. Polym J 42:839–851CrossRefGoogle Scholar
  56. 56.
    Sadlej J (2007) On the calculations of the vibrational Raman spectra of small water clusters. Chem Phys 342:163–172CrossRefGoogle Scholar
  57. 57.
    Walrafen GE, Hokmabadi MS, Yang WH (1986) Raman isosbestic points from liquid water. J Chem Phys 85:6964–6965CrossRefGoogle Scholar
  58. 58.
    Scatena LF, Brown MG, Richmond GL (2001) Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292:908–912PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Bakker HJ, Skinner JL (2009) Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem Rev 110:1498–1517CrossRefGoogle Scholar
  60. 60.
    Walrafen GE (1967) Raman spectroscopy studies of the effect of temperature on water structure. J Chem Phys 47:114–126CrossRefGoogle Scholar
  61. 61.
    Green JL, Lacey AR, Sceats MG (1986) Spectroscopic evidence for spatial correlation of hydrogen bonds in liquid water. J Phys Chem 90:3958–3964CrossRefGoogle Scholar
  62. 62.
    Auer BM, Skinner JL (2008) IR and Raman spectra of liquid water: theory and interpretation. J Chem Phys 128(22):224511PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Tominaga Y, Fujiwara A, Amo Y (1998) Dynamical structure of water by Raman spectroscopy. Fluid Phase Equilibira 144:323–330CrossRefGoogle Scholar
  64. 64.
    Walrafen GE, Hokmabadi MS, Yang WH (1988) Raman investigation of the temperature dependence of the bending ν2 and combination ν 2 + ν L bands from liquid water. J Phys Chem 92:2433–2438CrossRefGoogle Scholar
  65. 65.
    Maeda Y, Kakinoki K, Kitano H (1996) Raman spectroscopic study of water in lipid dispersions: changes in structure of hydrating water caused by gel-liquid crystal phase transition. J Raman Spec 27:425–427CrossRefGoogle Scholar
  66. 66.
    Luu DV, Cambon L (1990) Perturbation of liquid-water structure by ionic substances. J Mol Struc 237:411–419CrossRefGoogle Scholar
  67. 67.
    Green JL, Lacey AR, Sceats MG (1987) Collective proton motions in H2O/H2O2 mixture: evidence for defects and network reconstruction. J Chem Phys 86:1841–1847CrossRefGoogle Scholar
  68. 68.
    Marinov VS, Matsuura H (2002) Raman spectroscopic study of temperature dependence of water structure in aqueous solutions of a poly(oxyethylene) surfuctant. J Mol Struc 610:105–112CrossRefGoogle Scholar
  69. 69.
    Joachimiak A, Halamus T, Wojciechowski P, Ulanski J (2005) Structure of hydrogels based on lyotropic phases of cellulose derivative as studied by Raman spectroscopy. Macromol Chem Phys 206:59–65CrossRefGoogle Scholar
  70. 70.
    Pastorczak M, Kozanecki M, Ulanski J (2008) Raman resonance effect in liquid water. J Phys Chem A 112:10705–10707PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Sándorfy C (2006) Hydrogen bonding: how much anharmonicity? J Mol Struc 790:50–54CrossRefGoogle Scholar
  72. 72.
    Waldron RD (1957) Infrared spectra of HDO in water and ionic solutions. J Chem Phys 26:809–814CrossRefGoogle Scholar
  73. 73.
    Lee HB, Jhon MS, Andrade JD (1975) Nature of water in synthetic hydrogels. I. Dilatometry, specific conductivity, and differential scanning calorimetry of polyhydroxyethyl methacrylate. J Coll Interface Sci 51:225–231CrossRefGoogle Scholar
  74. 74.
    Maeda Y, Kitano H (1995) The structure of water in polymer systems as revealed by Raman spectroscopy. Spectrochim Acta A 51:2433–2446CrossRefGoogle Scholar
  75. 75.
    Maeda Y, lde M, Kitano H (1999) Vibrational spectroscopic Study on the structure of water in polymer systems. J Mol Liq 80:149–163CrossRefGoogle Scholar
  76. 76.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12CrossRefGoogle Scholar
  77. 77.
    Lafleur M, Pigeon M, Pezolet M, Caille JP (1989) Raman spectrum of interstitial water in biological systems. J Phys Chem 93:1522–1526CrossRefGoogle Scholar
  78. 78.
    Cerveny S, Colmenero J, Alegria A (2005) Dielectric investigation of the low-temperature water dynamics in the poly(vinyl methyl ether)/H2O system. Macromolecules 38:7056–7063CrossRefGoogle Scholar
  79. 79.
    Johari GP (1981) The dipolar correlation factor, the electrostatic field, the dipole moment, and the Coulombic interaction energy of water molecules in clathrate hydrates. J Chem Phys 74:1326–1336CrossRefGoogle Scholar
  80. 80.
    Henry F, Gaudilla M, Costa LC, Lakkis F (2003) Free and/or bound water by dielectric measurements. Food Chem 82:29–34CrossRefGoogle Scholar
  81. 81.
    Craig D (1995) Dielectric analysis of pharmaceutical systems. CRC Press, Boca RatonGoogle Scholar
  82. 82.
    Beneduci A (2008) Which is the effective time scale of the fast Debye relaxation process in water? J Mol Liq 138:55–60CrossRefGoogle Scholar
  83. 83.
    Ellison WJ, Moreau JM (1996) Water: a dielectric reference. J Mol Liq 68:171–279CrossRefGoogle Scholar
  84. 84.
    Shinyashiki N, Shimomura M, Ushiyama T, Miyagawa T, Yagihara S (2007) Dynamics of water in partially crystallized polymer/water mixtures studied by dielectric spectroscopy. J Phys Chem B 111:10079–10087PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Pastorczak M, Dominguez-Espinosa G, Okrasa L, Pyda M, Kozanecki M, Kadlubowski S, Rosiak JM, Ulanski J (2014) Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water—molecular interactions and states of water. Colloid Polym Sci 292:1775–1784PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Shen YR (2016) Fundamentals of sum-frequency spectroscopy. Cambridge molecular science. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  87. 87.
    Fayer M (2013) Ultrafast infrared vibrational spectroscopy. CRC Press, Boca RatonGoogle Scholar
  88. 88.
    Hamm P, Zanni M (2011) Concepts and methods of 2D infrared spectroscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  89. 89.
    Cheng J, Xie X. (2012) Coherent Raman scattering microscopy. CRC Press, Boca RatonCrossRefGoogle Scholar
  90. 90.
    Bakker HJ, Planken PCM (1990) Role of solvent on vibrational energy transfer in solution. Nature 347:745–747CrossRefGoogle Scholar
  91. 91.
    Woutersen S, Emmerichs U, Bakker HJ (1997) Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure. Science 278:658–660CrossRefGoogle Scholar
  92. 92.
    Woutersen S, Bakker HJ (1999) Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402:507–509CrossRefGoogle Scholar
  93. 93.
    Rezus YLA, Bakker HJ (2005) On the orientational relaxation of HDO in liquid water. J Chem Phys 123:114502PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Rezus YLA, Bakker HJ (2006) Orientational dynamics of isotopically diluted H2O and D2O. J Chem Phys 125:144512PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Rezus YLA, Bakker HJ (2007) Observation of immobilized water molecules around hydrophobic groups. Phys Rev Lett 99:148301PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Laage D, Hynes JT (2006) A molecular jump mechanism of water reorientation. Science 311:832–835PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Mohammed OF, Pines D, Dreyer J, Pines E, Nibbering ETJ (2005) Sequential proton transfer through water bridges in acid-base reactions. Science 310:83–86PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Cowan ML, Bruner BD, Huse N, Dwyer JR, Chugh B, Nibbering ETJ, Elsaesser T, Miller RJD (2005) Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434:199–202PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Fecko CJ, Eaves JD, Loparo JJ, Tokmakoff A, Geissler PL (2003) Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301:1698–1702PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Lock AJ, Bakker HJ (2002) Temperature dependence of vibrational relaxation in liquid H2O. J Chem Phys 117:1708–1713CrossRefGoogle Scholar
  101. 101.
    Ashihara S, Huse N, Espagne A, Nibbering ETJ, Elsaesser T (2006) Vibrational couplings and ultrafast relaxation of the O-H bending mode in liquid H2O. Chem Phys Lett 424:66–70CrossRefGoogle Scholar
  102. 102.
    Ashihara S, Huse N, Espagne A, Nibbering ETJ, Elsaesser T (2007) Ultrafast structural dynamics of water induced by dissipation of vibrational energy. J Phys Chem A 111:743–746PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Lindner J, Vöhringer P, Pshenichnikov MS, Cringus D, Wiersma DA, Mostovoy M (2006) Vibrational relaxation of pure liquid water. Chem Phys Lett 421:329–333CrossRefGoogle Scholar
  104. 104.
    Nienhuys H-K, Woutersen S, van Santen RA, Bakker HJ (1999) Mechanism for vibrational relaxation in water investigated by femtosecond infrared spectroscopy. J Chem Phys 111:1494–1500CrossRefGoogle Scholar
  105. 105.
    Kropman MF, Nienhuys H-K, Woutersen S, Bakker HJ (2001) Vibrational relaxation and hydrogen-bond dynamics of HDO:H2O. J Phys Chem A 105:4622–4626CrossRefGoogle Scholar
  106. 106.
    Hunger J, Bernecker A, Bakker HJ, Bonn M, Richter RP (2012) Hydration dynamics of hyaluronan and dextran. Biophys J 103:L10–L12PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Mazur K, Buchner R, Bonn M, Hunger J (2014) Hydration of sodium alginate in aqueous solution. Macromolecules 47:771–776CrossRefGoogle Scholar
  108. 108.
    Kocak G, Tuncer C, Butun V (2017) pH-responsive polymers. Polym Chem 8:144–176CrossRefGoogle Scholar
  109. 109.
    Chun MK, Cho CS, Choi HK (2002) Mucoadhesive drug carrier based on interpolymer complex of poly(vinyl pyrrolidone) and poly(acrylic acid) prepared by template polymerization. J Control Release 81:327–334PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Tsukida N, Muranaka H, Ide M, Maeda Y, Kitano H (1997) Effect of neutralization of poly(acrylic acid) on the structure of water examined by Raman spectroscopy. J Phys Chem B 101:6676–6679CrossRefGoogle Scholar
  111. 111.
    Tamura T, Kawauchi S, Satoh M, Komiyama J (1997) Infrared spectroscopic study and ab initio calculation for dissociation of poly(α-hydroxy acrylic acid) in aqueous solutions. Polymer 38:2093–2098CrossRefGoogle Scholar
  112. 112.
    Santonicola MG, de Groot GW, Memesa M, Meszyńska A, Vancso GJ (2010) Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces. Langmuir 26:17513–17519PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Dong J, Ozaki Y, Nakashima K (1997) Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules 30:1111–1117CrossRefGoogle Scholar
  114. 114.
    Walczak WJ, Hoagland DA, Hsu SL (1992) Analysis of polyelectrolyte chain conformation of polarized Raman-spectroscopy. Macromolecules 25:7317–7323CrossRefGoogle Scholar
  115. 115.
    Hofmeister F (1888) Zur Lehre Von Der Wirkung Der Salze. Naunyn-Schmiedeberg’s. Arch Pharmacol 24:247–260CrossRefGoogle Scholar
  116. 116.
    Hofmeister F (1888) Zur Lehre Von Der Wirkung Der Salze. Naunyn-Schmiedeberg’s. Arch Pharmacol 25:1–30CrossRefGoogle Scholar
  117. 117.
    Kunz W, Henle J, Ninham BW (2004) ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Coll Interface Sci 9:19–37CrossRefGoogle Scholar
  118. 118.
    Swann JMG, Bras W, Topham PD, Howse JR, Ryan AJ (2010) Effect of the hofmeister anions upon the swelling of a self-assembled pH-responsive hydrogel. Langmuir 26:10191–10197PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Sadeghi R, Jahani F (2012) Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. J Phys Chem B 116:5234–5241PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Tielrooij KJ, Garcia-Araez N, Bonn M, Bakker HJ (2010) Cooperativity in ion hydration. Science 328:1006–1009PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Pastorczak M, van der Post ST, Bakker HJ (2013) Cooperative hydration of carboxylate groups with alkali cations. Phys Chem Chem Phys 15:17767–17770PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Liu L, Kou R, Liu G (2017) Ion specificities of artificial macromolecules. Soft Matter 13:68–80CrossRefGoogle Scholar
  123. 123.
    Willott JD, Murdoch TJ, Webber GB, Wanless EJ (2017) Physicochemical behaviour of cationic polyelectrolyte brushes. Prog Polym Sci 64:52–75CrossRefGoogle Scholar
  124. 124.
    Shen YR (1989) Surface properties probed by second-harmonic and sum-frequency generation. Nature 337:519–525CrossRefGoogle Scholar
  125. 125.
    Beaman DK, Robertson EJ, Richmond GL (2011) Unique assembly of charged polymers at the oil − water interface. Langmuir 27:2104–2106PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Beaman DK, Robertson EJ, Richmond GL (2012) Ordered polyelectrolyte assembly at the oil–water interface. Proc Natl Acad Sci 109:3226–3231PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Balzerowski P, Meister K, Versluis J, Bakker HJ (2016) Heterodyne-detected sum frequency generation spectroscopy of polyacrylic acid at the air/water-interface. Phys Chem Chem Phys 18:2481–2487PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Kondo T, Nomura K, Murou M, Gemmei-Ide M, Kitano H, Noguchi H, Uosaki K, Ohno K, Saruwatari Y (2012) Structure of water in the vicinity of a zwitterionic polymer brush as examined by sum frequency generation method. Colloid Surf B 100:126–132CrossRefGoogle Scholar
  129. 129.
    Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62CrossRefGoogle Scholar
  130. 130.
    Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep. 93:1–49PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Wu C (1998) A comparison between the ‘coil-to-globule’ transition of linear chains and the ‘‘volume phase transition’’ of spherical microgels. Polymer 39:4609–4619CrossRefGoogle Scholar
  132. 132.
    Li Y, Tanaka T (1992) Phase transitions of gels. Annu Rev Mater Sci 22:243–277CrossRefGoogle Scholar
  133. 133.
    Olejniczak MN, Piechocki K, Kozanecki M, Koynov K, Adamus A, Wach RA (2016) The influence of selected NSAIDs on volume phase transition in poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels. J Mater Chem B 4:1528–1534CrossRefGoogle Scholar
  134. 134.
    Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40(12):820–823CrossRefGoogle Scholar
  135. 135.
    Dusek K, Patterson D (1968) Transition in swollen polymer networks induced by intramolecular condensation. J Polym Sci A 6:1209–1216CrossRefGoogle Scholar
  136. 136.
    Pititsen OB, Eizner YE (1965) The theory of helix-coil transitions in macromolecules. Biofizika 10:3–6Google Scholar
  137. 137.
    DeGennes PG (1972) Exponents for the excluded volume problem as derived by the Wilson method. Phys Lett A 38:339–340CrossRefGoogle Scholar
  138. 138.
    Lifshitz IM, Grosberg AY, Khokhlov AR (1978) Some problems of the statistical physics of polymer chains with volume interaction. Rev Modern Phys 50:683–713CrossRefGoogle Scholar
  139. 139.
    Maeda Y, Nakamura T, Ikeda I (2002) Hydration and phase behavior of poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone) in water. Macromolecules 35:217–222CrossRefGoogle Scholar
  140. 140.
    Schafer-Soenen H, Moerkerke R, Berghmans H, Koningsveld R, Dusek K, Solc K (1997) Zero and off-zero critical concentrations in systems containing polydisperse polymers with very high molar masses. 2. The system water − poly(vinyl methyl ether). Macromolecules 30:410–416CrossRefGoogle Scholar
  141. 141.
    Pyda M, Van Durme K, Wunderlich B, Van Mele B (2005) Heat capacity of poly(vinyl methyl ether). J Polym Sci B 43:2141–2153CrossRefGoogle Scholar
  142. 142.
    Vancoillie G, Frank D, Hoogenboom R (2014) Thermoresponsive poly(oligo ethylene glycol acrylates). Prog Polym Sci 39:1074–1095CrossRefGoogle Scholar
  143. 143.
    Wach RA, Mitomo H, Yoshii F, Kum T (2002) Hydrogel of radiation-induced cross-linked hydroxypropylcellulose. Macromol Mater Eng 287:285–295CrossRefGoogle Scholar
  144. 144.
    Xia X, Tang S, Lu X, Hu Z (2003) Formation and volume phase transition of hydroxypropyl cellulose microgels in salt solution. Macromolecules 36:3695–3698CrossRefGoogle Scholar
  145. 145.
    Cho EC, Lee J, Cho K (2003) Role of bound water and hydrophobic interaction in phase transition of poly(N-isopropylacrylamide) aqueous solution. Macromolecules 36:9929–9934CrossRefGoogle Scholar
  146. 146.
    Maeda Y, Kubota T, Yamauchi H, Nakaji T, Kitano H (2007) Hydration changes of poly(2-(2-methoxyethoxy)ethyl methacrylate) during thermosensitive phase separation in water. Langmuir 23:11259–11265CrossRefGoogle Scholar
  147. 147.
    Deshmukht SA, Sankaranarayanan SKRS, Suthar K, Mancini DC (2012) Role of solvation dynamics and local ordering of water in inducing conformational transitions in poly(N-isopropylacrylamide) oligomers through the LCST. J Phys Chem B 116:2651–2663CrossRefGoogle Scholar
  148. 148.
    Kozanecki M, Halagan K, Saramak J, Matyjaszewski K (2016) Diffusive properties of water molecules in neighborhood of polymer chain as seen by Monte-Carlo simulations. Soft Matter 12:5519–5528PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Saramak J, Halagan K, Kozanecki M, Polanowski P (2014) Computational studies of intermolecular interactions in aqueous solutions of poly (vinylmethylether). J Mol Model 20:2529PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Loozen E, Van Durme K, Nies E, Van Mele B, Berghmans H (2006) The anomalous melting behavior of water in aqueous PVME solutions. Polymer 47:7034–7042CrossRefGoogle Scholar
  151. 151.
    Van Durme K, Loozen E, Nies E, Van Mele B (2005) Phase behavior of poly(vinyl methyl ether) in deuterium oxide. Macromolecules 38:10234–10243CrossRefGoogle Scholar
  152. 152.
    Meeussen F, Bauwens Y, Moerkerke R, Nies E, Berghmans H (2000) Molecular complex formation in the system poly(vinyl methyl ether)/water. Polymer 41:3737–3743CrossRefGoogle Scholar
  153. 153.
    Zhang J, Berge B, Meeussen F, Nies E, Berghmans H, Shen D (2003) influence of the interactions in aqueous mixtures of poly(vinyl methyl ether) on the crystallization behavior of water. Macromolecules 36:9145–9153CrossRefGoogle Scholar
  154. 154.
    Nies E, Li T, Berghmans H, Heenan RK, King SM (2006) Supper critical solution temperature phase behavior, composition fluctuations, and complex formation in poly (vinyl methyl ether)/D2O solutions: small-angle neutron-scattering experiments and wertheim lattice thermodynamic perturbation theory predictions. J Phys Chem B 110:5321–5329PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Hidaka T, Sugihara S, Maeda Y (2013) Infrared spectroscopic study on LCST behavior of poly(N,N-bis(2-methoxyethyl)acrylamide). Eur Polym J 49:675–681CrossRefGoogle Scholar
  156. 156.
    Ide M, Maeda Y, Kitano H (1997) Effect of hydrophobicity of amino acids on the structure of water. J Phys Chem B 101:7022–7026CrossRefGoogle Scholar
  157. 157.
    Maeda Y, Higuchi T, Ikeda I (2000) Change in hydration state during the coil-globule transition of aqueous solutions of poly(n-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir 16:7503–7509CrossRefGoogle Scholar
  158. 158.
    Maeda Y, Yamamoto H, Ikeda I (2004) Micro-raman spectroscopic investigation on the phase separation of poly(vinyl methyl ether)/alcohol/water ternary mixtures. Langmuir 20:7339–7341PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Maeda Y, Yamauchi H, Kubota T (2009) Confocal micro-Raman and infrared spectroscopic study on the phase separation of aqueous poly(2-(2-methoxyethoxy)ethyl (meth)acrylate) solutions. Langmuir 25:479–482PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Maeda Y (2011) hydration of temperature-responsive polymers observed by ir spectroscopy. Macromol Symp 303:63–70CrossRefGoogle Scholar
  161. 161.
    Olejniczak MN, Kozanecki M, Saramak J, Matusiak M, Kadlubowski S, Matyjaszewski K (2017) Raman spectroscopy study on influence of network architecture on hydration of poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels. J Raman Spectr 48:465–473CrossRefGoogle Scholar
  162. 162.
    Pastorczak M, Kozanecki M, Ulanski J (2009) Water-polymer interactions in PVME hydrogels—Raman spectroscopy studies. Polymer 50(19):4535–4542CrossRefGoogle Scholar
  163. 163.
    Inomata H, Goto S, Otaka K, Saito S (1992) Effect of additives on phase transition of N-isopropylacrylamide gels. Langmuir 8:687–690CrossRefGoogle Scholar
  164. 164.
    Kokufuta E, Zhang YQ, Tanaka Y, Mamada A (1993) Effects of surfactants on the phase transition of poly (N-isopropylacrylamide) gel. Macromolecules 26:1053–1059CrossRefGoogle Scholar
  165. 165.
    Van Durme K, Rahier H, Van Mele B (2005) Influence of additives on the thermoresponsive behavior of polymers in aqueous solution. Macromolecules 38:10155–10163CrossRefGoogle Scholar
  166. 166.
    Suzuki Y, Suzuki N, Takasu Y, Nishio I (2007) A study on the structure of water in an aqueous solution by solvent effect on a volume phase transition of N-isopropylacrylamide gel and low-frequency Raman spectroscopy. J Chem Phys 107:5890–5897CrossRefGoogle Scholar
  167. 167.
    Otake K, Inomata H, Konno M, Saito S (1990) Thermal-analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 23:283–289CrossRefGoogle Scholar
  168. 168.
    Yoon JA, Gayathri C, Gil RR, Kowalewski T, Matyjaszewski K (2010) Comparison of the thermoresponsive deswelling kinetics of poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels prepared by ATRP and FRP. Macromolecules 43:4791–4797CrossRefGoogle Scholar
  169. 169.
    Zhu PW, Napper DH (1996) Volume phase transitions of poly(N-isopropylacrylamide) latex particles in mixed water-N, N-dimethylformamide solutions. Chem Phys Lett 256:51–56CrossRefGoogle Scholar
  170. 170.
    Ouyang JF, Bettens RPA (2015) Modelling water: a lifetime enigma. Chimia 69:104–111PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Chen M, Ko HY, Remsing RC, Calegari Andrade MF, Santra B, Sun Z, Selloni A, Car R, Klein ML, Perdew JP, Wu X (2017) Ab initio theory and modeling of water. PNAS 114:10846–10851PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Kotelyanskii M, Theodorou DN (2004) Simulation methods for polymers. Marcel Dekker, New YorkGoogle Scholar
  173. 173.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138CrossRefGoogle Scholar
  174. 174.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  175. 175.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  176. 176.
    Miertuš S, Scrocco E, Tomasi J (1981) Alectrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129CrossRefGoogle Scholar
  177. 177.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  178. 178.
    Hockney R, Eastwood J (1981) Computer simulation using particles. McGraw-Hill, New YorkGoogle Scholar
  179. 179.
    Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280CrossRefGoogle Scholar
  180. 180.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. JACS 117:5179–5197CrossRefGoogle Scholar
  181. 181.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Genet 65:712–725CrossRefGoogle Scholar
  182. 182.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012CrossRefGoogle Scholar
  183. 183.
    van Gunsteren WF, Berendsen HJC (1987) Groningen molecular simulation (GROMOS) library manual. Biomos, Groningen, The NetherlandsGoogle Scholar
  184. 184.
    van Gunsteren WF, Billeter S, Eising A, Hünenberger P, Krüger P, Mark A, Scott W, Tironi I (1996) Biomolecular simulation: the Gromos 96 manual and user guide. vdf Hochschulverlag AG an der ETH Zürich, Zürich, SwitzerlandGoogle Scholar
  185. 185.
    Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. JACS 110:1657–1666CrossRefGoogle Scholar
  186. 186.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690PubMedPubMedCentralGoogle Scholar
  187. 187.
    Sun H (1994) Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem 15:752–768CrossRefGoogle Scholar
  188. 188.
    Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271CrossRefGoogle Scholar
  189. 189.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  190. 190.
    Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123:234505PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160CrossRefGoogle Scholar
  193. 193.
    Espanol P, Warren PB (2017) Perspective: dissipative particle dynamics. J Chem Phys 146:150901PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Carmesin I, Kremer K (1988) The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules 21:2819–2823CrossRefGoogle Scholar
  195. 195.
    Shaffer SJ (1994) Effects of chain topology on polymer dynamics: bulk melts. J Chem Phys 101:4205CrossRefGoogle Scholar
  196. 196.
    Meyer KH (1940) Proprietes de polymeres en solution XVI. Interpretation statistique des proprietes thermodynamiques de systemes binaires liquides. Helv Chirn Acta 23:1063–1070CrossRefGoogle Scholar
  197. 197.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092CrossRefGoogle Scholar
  198. 198.
    Murat M, Witten TA (1990) Relaxation in bead-jump polymer simulations. Macromolecules 23:520–527CrossRefGoogle Scholar
  199. 199.
    Lal M (1969) ‘Monte Carlo’ computer simulation of chain molecules. Mol Phys 1:1757–1764Google Scholar
  200. 200.
    Olaj OF, Lantschbauer W (1982) Simulation of chain arrangement in bulk polymer, 1a,b). Chain dimensions and distribution of the end‐to‐end distance. Macromol Chem Rapid CommunGoogle Scholar
  201. 201.
    Pakula T (1987) Cooperative relaxations in condensed macromolecular systems. 1. A model for computer simulation. Macromolecules 20:679–682CrossRefGoogle Scholar
  202. 202.
    Pakula T (2000) Collective dynamics in simple supercooled and polymer liquids. J Mol Liq 86:109–121CrossRefGoogle Scholar
  203. 203.
    Polanowski P, Jeszka JK (2007) Microphase separation in two-dimensional athermal polymer solutions on a triangular lattice. Langmuir 23:8678–8680PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Polanowski P, Jeszka JK, Li W, Matyjaszewski K (2011) Effect of dilution on branching and gelation in living copolymerization of monomer and divinyl cross-linker: modeling using dynamic lattice liquid model (DLL) and Flory-Stockmayer (FS) model. Polymer 52:5092–5101CrossRefGoogle Scholar
  205. 205.
    Polanowski P, Jeszka JK, Matyjaszewski K (2014) Synthesis of star polymers by “core-first” one–pot method via ATRP: Monte Carlo simulations. Polymer 55:2552–2561CrossRefGoogle Scholar
  206. 206.
    Polanowski P, Jeszka JK, Krysiak K, Matyjaszewski K (2015) Influence of intramolecular crosslinking on gelation in living copolymerization of monomer and divinyl cross-linker. Monte Carlo simulation studies. Polymer 79:171–178CrossRefGoogle Scholar
  207. 207.
    Polanowski P, Sikorski A (2017) Comparison of different models of motion in a crowded environment: a Monte Carlo study. Soft Matter 13:1693–1701PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Aseyev V, Tenhu H, Winnik FM (2010) Non-ionic thermoresponsive polymers in water. Adv Polym Sci 242:29–89CrossRefGoogle Scholar
  209. 209.
    Longhi G, Lebon F, Abbate S, Fornili SL (2004) Molecular dynamics simulation of a model oligomer for poly(N-isopropylamide) in water. Chem Phys Lett 386:123–127CrossRefGoogle Scholar
  210. 210.
    Tamai Y, Tanaka H, Nakanishi K (1996) Molecular dynamics study of polymer–water interaction in hydrogels. 1. Hydrogen-bond structure. Macromolecules 29:6750–6760CrossRefGoogle Scholar
  211. 211.
    Wu R, Ji Q, Kong B, Yang X (2008) Molecular dynamics simulations of the hydration of poly(vinyl methyl ether): hydrogen bonds and quasi-hydrogen bonds. Sci China Ser B Chem 51:736–742CrossRefGoogle Scholar
  212. 212.
    Dalgakiran E, Tatlipinar H (2018) Atomistic insights on the LCST behavior of PMEO2MA in water by molecular dynamics simulations. J Polym Sci B 56:429–441CrossRefGoogle Scholar
  213. 213.
    Wu R, Qiu X, Yang X (2016) Molecular dynamics simulations of atomistic hydration structures of poly(vinyl methyl ether). Chin J Polym Sci 34:1396–1410CrossRefGoogle Scholar
  214. 214.
    Tavagnacco L, Zaccarelli E, Chiessi E (2018) On the molecular origin of the cooperative coil-to-globule transition of poly(N-isopropylacrylamide) in water. Phys Chem Chem Phys 20:9997–10010PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Walter J, Ermatchkov V, Vrabec J, Hasse H (2010) Molecular dynamics and experimental study of conformation change of poly(N-isopropylacrylamide) hydrogels in water. Fluid Phase Equilib 296:164–172CrossRefGoogle Scholar
  216. 216.
    Bhandary M, Benkova Cordeiro MN, Singh JK (2016) Molecular dynamics study of wetting behavior of grafted thermo-responsive PNIPAAm brushes. Soft Matter 12:3093–3102PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Min SH, Kwak SK Kim BS (2015) Atomistic simulation for coil-to-globule transition of poly(2-dimethylaminoethyl methacrylate). Soft Matter 11:2423–2433PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Samsonova O, Glinca S, Biela A, Pfeiffer C, Dayyoub E, Sahin D, Klebe G, Kissel T (2013) The use of isothermal titration calorimetry and molecular dynamics to show variability in DNA transfection performance. Acta Biomater 9:4994–5002PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Gangemi F, Longhi G, Abbate S, Lebon F, Cordone R, Ghilardi GP, Fornili SL (2008) Molecular dynamics simulation of aqueous solutions of 26-unit segments of p(NIPAAm) and of p(NIPAAm) “doped” with amino acid based comonomers. J Phys Chem B 112:11896–11906PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Tamai Longhi Y, Tanaka H, Nakanishi K (1996) Molecular dynamics study of polymer–water interaction in hydrogels. 2. Hydrogen-bond dynamics. Macromolecules 29:6761–6769CrossRefGoogle Scholar
  221. 221.
    Caykara T, Kiper S, Demirel G (2006) Network parameters and volume phase transition behavior of poly(N-isopropylacrylamide) hydrogels. J Appl Polym Sci 101:1756–1762CrossRefGoogle Scholar
  222. 222.
    Tucker AK, Stevens MJ (2012) Study of the polymer length dependence of the single chain transition temperature in syndiotactic poly(N-isopropylacrylamide) oligomers in water. Macromolecules 45:6697–6703CrossRefGoogle Scholar
  223. 223.
    Shan J, Zhao Y, Granqvist N, Tenhu H (2009) Thermoresponsive properties of N-isopropylacrylamide oligomer brushes grafted to gold nanoparticles: effects of molar mass and gold core size. Macromolecules 42:2696–2701CrossRefGoogle Scholar
  224. 224.
    Deshmukh SA, Kamath G, Suthar KJ, Mancini DC, Sankaranarayanan SKRS (2014) Non-equilibrium effects evidenced by vibrational spectra during the coil-to-globule transition in poly(N-isopropylacrylamide) subjected to an ultrafast heating–cooling cycle. Soft Matter 10:1462–1480PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Paradossi G, Chiessi E (2017) Tacticity-dependent interchain interactions of poly(N-isopropylacrylamide) in water: toward the molecular dynamics simulation of a thermoresponsive microgel. Gels 3:13CrossRefGoogle Scholar
  226. 226.
    Abbott LJ, Tucker AK, Stevens MJ (2015) Single chain structure of a poly(N-isopropylacrylamide) surfactant in water. J Phys Chem B 119:3837–3845PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Du H, Wickramasinghe R, Qian X (2010) Effects of salt on the lower critical solution temperature of poly (N-isopropylacrylamide). J Phys Chem B 114:16594–16604PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Han X, Feng J, Dong F, Zhang X, Liu H, Hu Y (2014) Thermo-/pH-responsive behaviours of base-rich diblock polyampholytes in aqueous solution: experiment and simulation. Mol Phys 112:2046–2057CrossRefGoogle Scholar
  229. 229.
    Kai K, Diannan L, Zheng L (2012) Temperature-triggered protein adsorption and desorption on temperature-responsive PNIPAAm-grafted-silica: molecular dynamics simulation and experimental validation. Chin J Chem Eng 20:284–293CrossRefGoogle Scholar
  230. 230.
    Lin H-C, Hsieh B-Z, Lin Y-L, Sheng Y-J, Lin J-J (2012) Effect of grafting architecture on the surfactant-like behavior of clay-poly(NiPAAm) nanohybrids. J Coll Interface Sci 387:106–114CrossRefGoogle Scholar
  231. 231.
    Wang L, Zhao X, Zhang Y, Zhang W, Ren T, Chen Z, Wang F, Yang H (2015) Fabrication of intelligent poly(N-isopropylacrylamide)/silver nanoparticle composite films with dynamic surface-enhanced Raman scattering effect. RSC Adv 5:40437–40443CrossRefGoogle Scholar
  232. 232.
    Moghadam S, Larson RG (2017) Assessing the efficacy of poly(N-isopropylacrylamide) for drug delivery applications using molecular dynamics simulations. Mol Pharmaceutics 14:478–491CrossRefGoogle Scholar
  233. 233.
    Ko H, Javey A (2017) Smart actuators and adhesives for reconfigurable matter. Acc Chem Res 50:691–702PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146CrossRefGoogle Scholar
  235. 235.
    Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1:276–288PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039CrossRefGoogle Scholar
  237. 237.
    Matyjaszewski K, Tsarevsky NV (2014) Macromolecular engineering by atom transfer radical polymerization. JACS 136:6513–6533CrossRefGoogle Scholar
  238. 238.
    Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K (2016) Photoinduced atom transfer radical polymerization with ppm-level Cu catalyst by visible light in aqueous media. JACS 137(49):15430–15433CrossRefGoogle Scholar
  239. 239.
    Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K (2016) Photomediated controlled radical polymerization. Prog Polym Sci 62:73–125CrossRefGoogle Scholar
  240. 240.
    Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410CrossRefGoogle Scholar
  241. 241.
    Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok H-A (2017) Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev 117:1105–1318PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Warren NJ, Armes SP (2014) Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. JACS 136:10174–10185CrossRefGoogle Scholar
  243. 243.
    Gröschel AH, Müller AHE (2015) Self-assembly concepts for multicompartment nanostructures. Nanoscale 7:11841–11876PubMedPubMedCentralGoogle Scholar
  244. 244.
    Han D, Lu Z, Chester SA, Lee H (2018) Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Scientific Reports 8:1963PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Kubelka J (2009) Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics. Photochem Photobiol Sci 8:499–512PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Causgrove TP, Dyer RB (2006) Nonequilibrium protein folding dynamics: laser-induced pH-jump studies of the helix–coil transition. Chem Phys 323:2–10CrossRefGoogle Scholar
  247. 247.
    Xu J, Zhu Z, Luo S, Wu C, Liu S (2006) First observation of two-stage collapsing kinetics of a single synthetic polymer chain. Phys Rev Lett 96:027802PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Pastorczak M, Okrasa L, Yoon JA, Kowalewski T, Matyjaszewski K (2017) Kinetics of the temperature-induced volume phase transition in poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels of various topologies. Polymer 110:25–35CrossRefGoogle Scholar
  249. 249.
    Bhattacharjee SM, Giacometti A, Maritan A (2013) Flory theory for polymers. J Phys Condens Matter 25:503101PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Fu J, Schlenoff JB (2016) Driving forces for oppositely charged polyion association in aqueous solutions: enthalpic, entropic, but not electrostatic. JACS 138:980–990CrossRefGoogle Scholar
  251. 251.
    von Neumann J (1947) The Mathematician. In: Heywood RB (ed) The works of the mind. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marcin Kozanecki
    • 1
  • Marcin Pastorczak
    • 2
  • Krzysztof Halagan
    • 1
  1. 1.Faculty of Chemistry, Department of Molecular PhysicsLodz University of TechnologyLodzPoland
  2. 2.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations