Small and Large Molecules Investigated by Raman Spectroscopy

From Conformational Study to Biomedical Applications
  • Krzysztof Czamara
  • Ewelina Szafraniec
  • Ewelina Wiercigroch
  • Szymon Tott
  • Grzegorz Zając
  • Ewa Machalska
  • Monika Dudek
  • Dominika Augustynska
  • Kamilla Malek
  • Agnieszka Kaczor
  • Malgorzata BaranskaEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)


This chapter presents selected techniques of Raman spectroscopy, i.e. Raman imaging, Raman optical activity (ROA), and surface-enhanced Raman spectroscopy (SERS), and gives an overview on their biomedical applications. The current state of the art in the research on chiroptical compounds of biomedical importance, as well as the study on early apoptosis and inflammation processes occuring in the endothelium, is presented. The pathophysiology of the endothelium is discussed based on the example of Raman imaging results for primary cells and cell cultures. Moreover, the comparison of classical Raman imaging, application of optical fiber probes, and immuno-SERS nanosensors in detection of marker proteins in ex vivo studies is discussed.


  1. 1.
    Atkins PW, Barron LD (1969) Rayleigh scattering of polarized photons by molecules. Mol Phys 16:453–466CrossRefGoogle Scholar
  2. 2.
    Barron LD, Buckingham AD (1971) Rayleigh and Raman scattering from optically active molecules. Mol Phys 20:1111–1119CrossRefGoogle Scholar
  3. 3.
    Barron LD, Bogaard MP, Buckingham AD (1973) Raman scattering of circularly polarized light by optically active molecules. J Am Chem Soc 95:603–605CrossRefGoogle Scholar
  4. 4.
    Hecht L, Barron LD, Blanch EW, Bell AF, Day LA, Ziegler LD (1999) Raman optical activity instrument for studies of biopolymer structure and dynamics. J Raman Spectrosc 30:815–825CrossRefGoogle Scholar
  5. 5.
    Hug W (2003) Virtual enantiomers as the solution of optical activity’s deterministic offset problem. Appl Spectrosc 57:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Hug W (2010) Raman optical activity, spectrometers A2. In: Lindon JC (ed) BT—encyclopedia of spectroscopy and spectrometry, 2nd edn. Academic Press, Oxford, pp 2387–2396CrossRefGoogle Scholar
  7. 7.
    Kapitán J, Barron LD, Hecht L (2015) A novel Raman optical activity instrument operating in the deep ultraviolet spectral region. J Raman Spectrosc 46:392–399CrossRefGoogle Scholar
  8. 8.
    Kubota K, Shingae T, Foster ND, Kumauchi M, Hoff WD, Unno M (2013) Active site structure of photoactive yellow protein with a locked chromophore analogue revealed by near-infrared Raman optical activity. J Phys Chem Lett 4:3031–3038CrossRefGoogle Scholar
  9. 9.
    Profant V, Pazderková M, Pazderka T, Maloň P, Baumruk V (2014) Relative intensity correction of Raman optical activity spectra facilitates extending the spectral region. J Raman Spectrosc 45:603–609CrossRefGoogle Scholar
  10. 10.
    Shingae T, Kubota K, Kumauchi M, Tokunaga F, Unno M (2013) Raman optical activity probing structural deformations of the 4-hydroxycinnamyl chromophore in photoactive yellow protein. J Phys Chem Lett 4:1322–1327PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Unno M, Kikukawa T, Kumauchi M, Kamo N (2013) Exploring the active site structure of a photoreceptor protein by Raman optical activity. J Phys Chem B 117:1321–1325PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Yamamoto S, Watarai H (2010) Incident circularly polarized Raman optical activity spectrometer based on circularity conversion method. J Raman Spectrosc 41:1664–1669CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Wang P, Jia G, Cheng F, Li C (2017) A short-wavelength Raman optical activity spectrometer with laser source at 457 nm for the characterization of chiral molecules. Appl Spectrosc 71:2211–2217PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Barron LD, Hecht L, Blanch EW, Bell AF (2000) Solution structure and dynamics of biomolecules from Raman optical activity. Prog Biophys Mol Biol 73:1–49PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Blanch E (2003) Vibrational Raman optical activity of proteins, nucleic acids, and viruses. Methods 29:196–209PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Barron LD, Hecht L, McColl IH, Blanch EW (2004) Raman optical activity comes of age. Mol Phys 102:731–744CrossRefGoogle Scholar
  17. 17.
    Hecht L, Phillips AL, Barron LD (1995) Determination of enantiomeric excess using Raman optical activity. J Raman Spectrosc 26:727–732CrossRefGoogle Scholar
  18. 18.
    Blanch EW, Bell AF, Hecht L, Day LA, Barron LD (1999) Raman optical activity of filamentous bacteriophages: hydration of α-helices. J Mol Biol 290:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wen ZQ, Barron LD, Hecht L (1993) Vibrational Raman optical activity of monosaccharides. J Am Chem Soc 115:285–292CrossRefGoogle Scholar
  20. 20.
    Bell AF, Hecht L, Barron LD (1994) Disaccharide solution stereochemistry from vibrational Raman optical activity. J Am Chem Soc 116:5155–5161CrossRefGoogle Scholar
  21. 21.
    Bell AF, Hecht L, Barron LD (1995) Vibrational Raman optical activity of ketose monosaccharides. Spectrochim Acta A 51:1367–1378CrossRefGoogle Scholar
  22. 22.
    Blanch EW, Hecht L, Barron LD (2003) Vibrational Raman optical activity of proteins, nucleic acids, and viruses. Methods 29:196–209PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kessler J, Yamamoto S, Bouř P (2017) Establishing the link between fibril formation and Raman optical activity spectra of insulin. Phys Chem Chem Phys 19:13614–13621PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gąsior-Głogowska M, Malek K, Zajac G, Baranska M (2016) A new insight into the interaction of cisplatin with DNA: ROA spectroscopic studies on the therapeutic effect of the drug. Analyst 141:291–296PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Polavarapu PL (1990) Ab initio vibrational Raman and Raman optical activity spectra. J Phys Chem 94:8106–8112CrossRefGoogle Scholar
  26. 26.
    Bose PK, Polavarapu PL, Barron LD, Hecht L (1990) Ab initio and experimental Raman optical activity in (+)-(R)-methyloxirane. J Phys Chem 94:1734–1740CrossRefGoogle Scholar
  27. 27.
    Ruud K, Helgaker T, Bouř P (2002) Gauge-origin independent density-functional theory calculations of vibrational Raman optical activity. J Phys Chem A 106:7448–7455CrossRefGoogle Scholar
  28. 28.
    Jovan Jose KV, Raghavachari K (2016) Raman optical activity spectra for large molecules through molecules-in-molecules fragment-based approach. J Chem Theory Comput 12:585–594PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kessler J, Kapitán J, Bouř P (2015) First-principles predictions of vibrational Raman optical activity of globular proteins. J Phys Chem Lett 6:3314–3319CrossRefGoogle Scholar
  30. 30.
    Abdali S, Blanch EW (2008) Surface enhanced Raman optical activity (SEROA). Chem Soc Rev 37:980–992PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hiramatsu K, Leproux P, Couderc V, Nagata T, Kano H (2015) Raman optical activity spectroscopy by visible-excited coherent anti-Stokes Raman scattering. Opt Lett 40:4170–4173PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Tatarkovič M, Miškovičová M, Šťovíčková L, Synytsya A, Petruželka L, Setnička V (2015) The potential of chiroptical and vibrational spectroscopy of blood plasma for the discrimination between colon cancer patients and the control group. Analyst 140:2287–2293PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Šebestík J, Teplý F, Císařová I, Vávra J, Koval D, Bouř P (2016) Intense chirality induction in nitrile solvents by a helquat dye monitored by near resonance Raman scattering. Chem Commun 52:6257–6260CrossRefGoogle Scholar
  34. 34.
    Šebestík J, Bouř P (2011) Raman optical activity of methyloxirane gas and liquid. J Phys Chem Lett 2:498–502CrossRefGoogle Scholar
  35. 35.
    Šebestík J, Kapitán J, Pačes O, Bouř P (2016) Diamagnetic Raman optical activity of chlorine, bromine, and iodine gases. Angew Chem—Int Ed 55:3504–3508PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Šebestík J, Bouř P (2014) Observation of paramagnetic Raman optical activity of nitrogen dioxide. Angew Chem—Int Ed 53:9236–9239PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Wu T, Kapitán J, Mašek V, Bouř P (2015) Detection of circularly polarized luminescence of a Cs–EuIII complex in Raman optical activity experiments. Angew Chem—Int Ed 54:14933–14936PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Nafie LA (1996) Theory of resonance Raman optical activity: the single electronic state limit. Chem Phys 205:309–322CrossRefGoogle Scholar
  39. 39.
    Vargek M, Freedman TB, Lee E, Nafie L (1998) Experimental observation of resonance Raman optical activity. Chem Phys Lett 287:359–364CrossRefGoogle Scholar
  40. 40.
    Merten C, Li H, Nafie LA (2012) Simultaneous resonance Raman optical activity involving two electronic states. J Phys Chem A 116:7329–7336PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Haraguchi S, Hara M, Shingae T, Kumauchi M, Hoff WD, Unno M (2015) Experimental detection of the intrinsic difference in Raman optical activity of a photoreceptor protein under preresonance and resonance conditions. Angew Chem—Int Ed 54 11555–11558PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Magg M, Kadria-Vili Y, Oulevey P, R. Weisman B, Bürgi T (2016) Resonance Raman optical activity spectra of single-walled carbon nanotube enantiomers. J Phys Chem Lett 7:221–225PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Zajac G, Kaczor A, Pallares Zazo A, Mlynarski J, Dudek M, Baranska M (2016) Aggregation-induced resonance raman optical activity (AIRROA): a new mechanism for chirality enhancement. J Phys Chem B 120:4028–4033PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Dudek M, Zajac G, Kaczor A, Baranska M (2016) Aggregation-induced resonance Raman optical activity (AIRROA) and time-dependent helicity switching of astaxanthin supramolecular assemblies. J Phys Chem B 120:7807–7814PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zajac G, Lasota J, Dudek M, Kaczor A, Baranska M (2017) Pre-resonance enhancement of exceptional intensity in aggregation-induced Raman optical activity (AIROA) spectra of lutein derivatives. Spectrochim Acta A 173:356–360CrossRefGoogle Scholar
  46. 46.
    Dudek M, Zajac G, Kaczor A, Baranska M (2017) Resonance Raman optical activity of zeaxanthin aggregates. J Raman Spectrosc 48:673–679CrossRefGoogle Scholar
  47. 47.
    Procházka M (2016) Surface-enhanced Raman spectroscopy. Bioanalytical, biomolecular and medical applications. Springer International Publishing, SwitzerlandCrossRefGoogle Scholar
  48. 48.
    Schlücker S (ed) (2011) Surface-enhanced raman spectroscopy. Analytical, biophysical and life science applications. Wiley-VCH Verlag & Co. KGaA, WeinheimGoogle Scholar
  49. 49.
    Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, ChichesterCrossRefGoogle Scholar
  50. 50.
    Kaczor A, Malek K, Baranska M (2010) Pyridine on colloidal silver. Polarization of surface studied by surface-enhanced Raman scattering and density functional theory methods. J Phys Chem C 114:3909–3917CrossRefGoogle Scholar
  51. 51.
    Jaworska A, Malek K (2014) A comparison between adsorption mechanism of tricyclic antidepressants on silver nanoparticles and binding modes on receptors. Surface-enhanced Raman spectroscopy studies. J Colloid Interface Sci 431:117–124PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Jaworska A, Wietecha-Posłuszny R, Woźniakiewicz M, Koscielniak P, Malek K (2011) Evaluation of the potential of surface enhancement Raman spectroscopy for detection of tricyclic psychotropic drugs. Case studies on imipramine and its metabolite. Anal 136:4704–4709CrossRefGoogle Scholar
  53. 53.
    Živanović V, Madzharova F, Heiner Z, Arenz C, Kneipp J (2017) Specific interaction of rricyclic antidepressants with gold and silver nanostructures as revealed by combined one- and two-photon vibrational spectroscopy. J Phys Chem C 121:22958–22968CrossRefGoogle Scholar
  54. 54.
    Cîntǎ-Pînzaru S, Peica N, Küstner B, Schlücker S, Schmitt M, Frosch T, Faber JH, Bringmann G, Popp J (2006) FT-Raman and NIR-SERS characterization of the antimalarial drugs chloroquine and mefloquine and their interaction with hematin. J Raman Spectrosc 37:326–334CrossRefGoogle Scholar
  55. 55.
    Jaworska A, Malek K, Marzec KM, Baranska M (2012) Nicotinamide and trigonelline studied with surface-enhanced FT-Raman spectroscopy. Vib Spectrosc 63:469–476CrossRefGoogle Scholar
  56. 56.
    Jaworska A, Malek K, Marzec KM, Baranska M (2014) An impact of the ring substitution in nicorandil on its adsorption on silver nanoparticles. Surface-enhanced Raman spectroscopy studies. Spectrochim Acta A 129:624–631CrossRefGoogle Scholar
  57. 57.
    Marzec KM, Jaworska A, Malek K, Kaczor A, Baranska M (2013) Substituent effect on structure and surface activity of N-methylpyridinium salts studied by FT-IR, FT-RS, SERS and DFT calculations. J Raman Spectrosc 44:155–165CrossRefGoogle Scholar
  58. 58.
    Ostovar Pour S, Rocks L, Faulds K, Graham D, Parchaňský V, Bouř P, Blanch EW (2015) Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nat Chem 7:591–596PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M (2013) Raman spectroscopy of proteins: a review. J Raman Spectrosc 44:1061–1076CrossRefGoogle Scholar
  60. 60.
    Pacia MZ, Mateuszuk L, Chlopicki S, Baranska M, Kaczor A (2015) Biochemical changes of the endothelium in the murine model of NO-deficient hypertension. Analyst 140:2178–2184PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 43:13–25CrossRefGoogle Scholar
  62. 62.
    Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M (2015) Raman spectroscopy of lipids: a review. J Raman Spectrosc 46:4–20CrossRefGoogle Scholar
  63. 63.
    Byrne HJ, Baranska M, Puppels GJ, Stone N, Wood B, Gough KM, Lasch P, Heraud P, Sulé-Susoj J, Sockalingum GD (2015) Spectropathology for the next generation: quo vadis? Analyst 140:2066–2073PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173CrossRefGoogle Scholar
  65. 65.
    Bouis D, Hospers GAP, Meijer C, Molema G, Mulder NH (2001) Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis 4:91–102CrossRefGoogle Scholar
  66. 66.
    Aird WC (2003) Endothelial cell heterogeneity. Crit Care Med 31:S221–S230PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Wilson SE, Lloyd SA, He YG, McCash CS (1993) Extended life of human corneal endothelial cells transfected with the SV40 large T antigen. Invest Ophthalmol Vis Sci 34:2112–2123PubMedPubMedCentralGoogle Scholar
  68. 68.
    Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci 80:3734–3737PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ades E, Candal F, Swerlick R, George VG, Summers S, Bosse DC, Lawley TJ (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 99:683–690PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Lidington EA, Moyes DL, McCormack AM, Rose ML (1999) A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions. Transpl Immunol 7:239–246PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Baranska M, Kaczor A, Malek K, Jaworska A, Majzner K, Staniszewska-Slezak E, Pacia MZ, Zajac G, Dybas J, Wiercigroch E (2015) Raman microscopy as a novel tool to detect endothelial dysfunction. Pharmacol Reports 67:736–743CrossRefGoogle Scholar
  72. 72.
    Pacia MZ, Buczek E, Blazejczyk A, Gregorius A, Wietrzyk J, Chlopicki Baranska M, Kaczoret A (2016) 3D Raman imaging of systemic endothelial dysfunction in the murine model of metastatic breast cancer. Anal Bioanal Chem 408:3381–3387PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Pacia MZ, Mateuszuk L, Buczek E, Chlopicki S, Blazejczyk A, Wietrzyk A, Baranska M, Kaczor A (2016) Rapid biochemical profiling of endothelial dysfunction in diabetes, hypertension and cancer metastasis by hierarchical cluster analysis of Raman spectra. J Raman Spectrosc 47:1310–1317CrossRefGoogle Scholar
  74. 74.
    Pilarczyk M, Mateuszuk L, Rygula A, Kepczynski M, Chlopicki S, Baranska M, Kaczor A (2014) Endothelium in spots—high-content imaging of lipid rafts clusters in db/db mice. PLoS ONE 9:e106065PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Pilarczyk M, Rygula A, Mateuszuk L, Chlopicki S, Baranska M, Kaczor A (2013) Multi-methodological insight into the vessel wall cross-section: Raman and AFM imaging combined with immunohistochemical staining. Biomed Spectrosc Imaging 2:191–197Google Scholar
  76. 76.
    Rygula A, Pacia MZ, Mateuszuk L, Kaczor A, Kostogrys RB, Chlopicki S, Baranska M (2015) Identification of a biochemical marker for endothelial dysfunction using Raman spectroscopy. Analyst 140:2185–2189PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Buschman HP, Marple ET, Wach ML, Bennett B, Bakker Schut TC, Bruining HA, Bruschke AV, van der Laarse A, Puppels GJ (2000) In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal Chem 72:3771–3775PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Wang HW, Le TT, Cheng JX (2008) Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Opt Commun 281:1813–1822PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Majzner K, Kaczor A, Kachamakova-Trojanowska N, Fedorowicz A, Chlopicki S, Baranska M (2013) 3D confocal Raman imaging of endothelial cells and vascular wall: perspectives in analytical spectroscopy of biomedical research. Analyst 138:603–610PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Elsheikha HM, Alkurashi M, Kong K, Zhu X-Q (2014) Metabolic footprinting of extracellular metabolites of brain endothelium infected with Neospora caninum in vitro. BMC Res Notes 7:406PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Große C, Bergner N, Dellith J, Heller R, Bauer M, Mellmann A, Popp J, Neugebauer U (2015) Label-free imaging and spectroscopic analysis of intracellular bacterial infections. Anal Chem 87:2137–2142PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kong K, Rowlands CJ, Elsheikha H, Notingher I (2012) Label-free molecular analysis of live Neospora caninum tachyzoites in host cells by selective scanning Raman micro-spectroscopy. Analyst 137:4119–4122PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Majzner K, Kochan K, Kachamakova-Trojanowska N, Maslak E, Chlopicki S, Baranska M (2014) Raman imaging provides insights into chemical composition of lipid droplets of different size and origin: in hepatocytes and endothelium. Anal Chem 86:6666–6674PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Majzner K, Chlopicki S, Baranska M (2016) Lipid droplets formation in human endothelial cells in response to polyunsaturated fatty acids and 1-methyl-nicotinamide (MNA); confocal Raman imaging and fluorescence microscopy studies. J Biophotonics 9:396–405PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Astanina K, Koch M, Jüngst C, Zumbusch A, Kiemer AK (2015) Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells. Sci Rep 5:11453PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Melo RC, D’Avila H, Wan HC, Bozza PT, Dvorak AM, Weller PF (2011) Lipid bodies in inflammatory cells. J Histochem Cytochem 59:540–556PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Pi J, Li T, Liu J, Su X, Wang R, Yang F, Bai H, Jin H, Cai J (2014) Detection of lipopolysaccharide induced inflammatory responses in RAW264.7 macrophages using atomic force microscope. Micron 65:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Szymonski M, Targosz-Korecka M, Malek-Zietek KE (2015) Nano-mechanical model of endothelial dysfunction for AFM-based diagnostics at the cellular level. Pharmacol Rep 67:728–735PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Czamara K, Majzner K, Selmi A, Baranska M, Ozaki Y, Kaczor A (2017) Unsaturated lipid bodies as a hallmark of inflammation studied by Raman 2D and 3D microscopy. Sci Rep 7:40889PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Zhang D, Feng Y, Zhang Q, Su X, Lu X, Liu S, Zhong L (2015) Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis. Spectrochim Acta A 141:216–222CrossRefGoogle Scholar
  92. 92.
    Moritz TJ, Taylor DS, Krol DM, Fritch J, Chan JW (2010) Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy. Biomed Opt Express 1:1138–1147PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Huang H, Shi H, Feng S, Chen W, Yu Y, Lina D, Chen R (2013) Confocal Raman spectroscopic analysis of the cytotoxic response to cisplatin in nasopharyngeal carcinoma cells. Anal Methods 5:260–266CrossRefGoogle Scholar
  94. 94.
    Lipiec E, Bambery KR, Heraud P, Kwiatek WM, McNaughton D, Tobin MJ, Vogel C, Wood BR (2014) Monitoring UVR induced damage in single cells and isolated nuclei using SR-FTIR microspectroscopy and 3D confocal Raman imaging. Analyst 139:4200–4209PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Li B, Lu MQ, Wang QZ, Shi G, Liao W, Huang S (2015) Raman spectra analysis for single mitochondrias after apoptosis process of yeast cells stressed by acetic acid. Fenxi Huaxue Chin J Anal Chem 43:643–650CrossRefGoogle Scholar
  96. 96.
    Yao H, Tao Z, Ai M, Peng L, Wang G, He B, Li Y (2009) Raman spectroscopic analysis of apoptosis of single human gastric cancer cells. Vib Spectrosc 50:193–197CrossRefGoogle Scholar
  97. 97.
    Panza J, Maier J (2007) Raman spectroscopy and Raman chemical imaging of apoptotic cells. Imag Manip Anal Biomol Cells Tissue V 6441:6441081–64410812Google Scholar
  98. 98.
    Ong YH, Lim M, Liu Q (2012) Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells. Opt Express 20:22158–22171PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Brauchle E, Thude S, Brucker SY, Schenke-Layland K (2015) Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci Rep 4:4698CrossRefGoogle Scholar
  100. 100.
    Jiang X, Jiang Z, Xu T, Su S, Zhong Y, Peng F, Su Y, He Y (2013) Surface-enhanced Raman scattering-based sensing in vitro: facile and label-free detection of apoptotic cells at the single-cell level. Anal Chem 85:2809–2816PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Pliss A, Kuzmin AN, Kachynski AV, Prasad PN (2010) Biophotonic probing of macromolecular transformations during apoptosis. Proc Natl Acad Sci U S A 107:12771–12776PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Verrier S, Notingher I, Polak JM, Hench LL (2004) In situ monitoring of cell death using Raman microspectroscopy. Biopolymers 74:157–162PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Zoladek A, Pascut FC, Patel P, Notingher I (2011) Non-invasive time-course imaging of apoptotic cells by confocal Raman micro-spectroscopy. J Raman Spectrosc 42:251–258CrossRefGoogle Scholar
  104. 104.
    Fazio E, Trusso S, Franco D, Nicolò MS, Allegra A, Neri F, Musolino C, Guglielmino SP (2016) A micro-Raman spectroscopic investigation of leukemic U-937 cells in aged cultures. Spectrochim Acta A 159:21–29CrossRefGoogle Scholar
  105. 105.
    Okada M, Smith NI, Palonpon AF, Endo H, Kawata S, Sodeoka M, Fujita K (2012) Label-free Raman observation of cytochrome c dynamics during apoptosis. Proc Natl Acad Sci 109:28–32PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Czamara K, Petko F, Baranska M, Kaczor A (2016) Raman microscopy at the subcellular level: a study on early apoptosis in endothelial cells induced by Fas ligand and cycloheximide. Analyst 141:1390–1397PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:3–6CrossRefGoogle Scholar
  108. 108.
    Schneider-Poetsch T, Ju J, Eyler DE, Dang Y, Bhat S, Merrick WC, Green R, Shen B, Liu JO (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol 6:209–217PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Farhane Z, Nawaz H, Bonnier F, Byrne HJ (2018) In vitro label-free screening of chemotherapeutic drugs using Raman microspectroscopy: towards a new paradigm of spectralomics. J Biophotonics 11. Scholar
  110. 110.
    Siddique MR, Rutter AV, Wehbe K, Cinque G, Bellisolac G, Sulé-Suso J (2017) Effects of nilotinib on leukaemia cells using vibrational microspectroscopy and cell cloning. Analyst 142:1299–1307PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Nawaz H, Bonnier F, Meade AD, Lynga FM, Byrne HJ (2011) Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy. Analyst 136:2450–2463PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Farhane Z, Bonnier F, Casey A, Byrne HJ (2015) Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin. Analyst 140:4212–4223PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741CrossRefGoogle Scholar
  114. 114.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229CrossRefGoogle Scholar
  115. 115.
    Ciesielska E, Studzian K, Wąsowska M, Oszczapowicz I, Szmigiero L (2015) Cytotoxicity, cellular uptake and DNA damage by daunorubicin and its new analogues with modified daunosamine moiety. Cell Biol Toxicol 21:139–147CrossRefGoogle Scholar
  116. 116.
    Szafraniec E, Majzner K, Farhane Z, Byrne HJ, Lukawska M, Oszczapowicz I, Chlopicki S, Baranska M (2016) Spectroscopic studies of anthracyclines: structural characterization and in vitro tracking. Spectrochim Acta A 169:152–160CrossRefGoogle Scholar
  117. 117.
    Majzner K, Wojcik T, Szafraniec E, Lukawska M, Oszczapowicz I, Chlopicki S, Baranska M (2015) Nuclear accumulation of anthracyclines in the endothelium studied by bimodal imaging: fluorescence and Raman microscopy. Analyst 140:2302–2310PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Zhang Q, Lu X, Tang P, Zhang D, Zhong L, Tian J (2016) Gold nanoparticle (AuNP)-based surface-enhanced Raman scattering (SERS) probe of leukemic lymphocytes. Plasmonics 11:1361–1368CrossRefGoogle Scholar
  119. 119.
    Fabris L (2015) Gold-based SERS tags for biomedical imaging. J Opt 17:114002CrossRefGoogle Scholar
  120. 120.
    Huang JY, Zong C, Xu LJ, Cui Y, Ren B (2011) Clean and modified substrates for direct detection of living cells by surface-enhanced Raman spectroscopy. Chem Commun 47:5738–5740CrossRefGoogle Scholar
  121. 121.
    Taylor J, Huefner A, Li L, Wingfieldc J, Mahajan S (2016) Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy. Analyst 141:5037–5055PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Jaworska A, Wojcik T, Malek K, Kwolek U, Kepczynski M, Ansary AA, Chlopicki S, Baranska M (2015) Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Microchim Acta 182:119–127CrossRefGoogle Scholar
  123. 123.
    Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Panikkanvalappil SR, Hira SM, El-Sayed MA (2016) Elucidation of ultraviolet radiation-induced cell responses and intracellular biomolecular dynamics in mammalian cells using surface-enhanced Raman spectroscopy. Chem Sci 7:1133–1141PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Huang J, Zong C, Shen H, Cao U, Ren B, Zhang Z (2013) Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy. Nanoscale 5:10591–10598PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Kim JH, Kim JS, Choi H, Lee SM, Jun BH, Yu KN, Kuk E, Kim YK, Jeong DH, Cho MH, Lee YS (2006) Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal Chem 78:6967–6973PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Cialla-May D, Zheng X-S, Weber K, Popp J (2017) Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 46:3945–3961PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Jaworska A, Jamieson LE, Malek K, Campbell CJ, Choo J, Chlopicki S, Baranska M (2015) SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α. Analyst 140:2321–2329PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004) Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem 76:7064–7068PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Wang F, Widejko RG, Yang Z, Nguyen KT, Chen H, Fernando LP, Christensen KA, Anker JN (2012) Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles. Anal Chem 84:8013–8019PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Wei H, Willner MR, Marr LC, Vikesland PJ (2016) Highly stable SERS pH nanoprobes produced by co-solvent controlled AuNP aggregation. Analyst 141:5159–5169PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Lim JK, Joo S-W (2006) Gold nanoparticle-based pH sensor in highly alkaline region at pH > 11: surface-enhanced Raman scattering study. Appl Spectrosc 60:847–852PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Wang Z, Bonoiu A, Samoc M, Cui Y, Prasad PN (2008) Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. Biosens Bioelectron 23:886–891PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Chen P, Wang Z, Zong S, Zhu D, Chen H, Zhang Y, Wu L, Cui Y (2016) pH-sensitive nanocarrier based on gold/silver core–shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells. Biosens Bioelectron 75:446–451PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Song J, Zhou J, Duan H (2012) Self-assembled plasmonic vesicles of SERS-Encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J Am Chem Soc 134:13458–13469PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Bobba KN, Saranya G, Alex SM, Velusamy N, Maiti KK, Bhuniya S (2018) SERS-active multi-channel fluorescent probe for NO: guide to discriminate intracellular biothiols. Sensors Actuators B Chem 260:165–173CrossRefGoogle Scholar
  137. 137.
    Cao Y, Li DW, Zhao LJ, Liu XY, Cao XM, Long YT (2015) Highly selective detection of carbon monoxide in living cells by palladacycle carbonylation-based surface enhanced raman spectroscopy nanosensors. Anal Chem 87:9696–9701PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Pissuwan D, Hobro AJ, Pavillon N, Smith NI (2014) Distribution of label free cationic polymer-coated gold nanorods in live macrophage cells reveals formation of groups of intracellular SERS signals of probe nanoparticles. RSC Adv 4:5536CrossRefGoogle Scholar
  139. 139.
    Kang JW, So PTC, Dasari RR, Lim D-K (2015) High resolution live cell Raman imaging using subcellular organelle-targeting sers-sensitive gold nanoparticles with highly narrow intra-nanogap. Nano Lett 15:1766–1772PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Xu L, Zhao S, Ma W, Wu X, Li S, Kuang H, Wang L, Xu C (2016) Multigaps embedded nanoassemblies enhance in situ Raman spectroscopy for intracellular telomerase activity sensing. Adv Funct Mater 26:1602–1608CrossRefGoogle Scholar
  141. 141.
    Kaur G, Dufour JM (2012) Cell lines: valuable tools or useless artifacts. Spermatogenesis 2:1–5PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Pan C, Kumar C, Bohl S, Klingmueller U, Mann M (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8:443–450PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Maslak E, Gregorius A, Chlopicki S (2015) Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol Rep 67:689–694PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Edelberg JM, Aird WC, Wu W, Rayburn H, Mamuya WS, Mercola M, Rosenberg RD (1998) PDGF mediates cardiac microvascular communication. J Clin Invest 102:837–843PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Wayhart JP, Lawson HA (2017) Animal models of metabolic syndrome A2. In: Conn P, Michael BT (eds) Animal models for the study of human disease. 2nd edn. Academic Press, pp 221–243 (Chapter 9)Google Scholar
  146. 146.
    Sørensen KK, Simon-Santamaria J, McCuskey RS, Smedsrød B (2011) Liver sinusoidal endothelial cells. Compr Physiol 5:1751–1774Google Scholar
  147. 147.
    Wisse E (1972) An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells. J Ultrastruct Res 38:528–562PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Elvevold K, Smedsrod B, Martinez I (2008) The liver sinusoidal endothelial cell: a cell type of controversial and confusing identity. Am J Physiol Gastrointest Liver Physiol 294:G391–G400PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Meyer J, Lacotte S, Morel P, Gonelle-Gispert C, Bühler L (2016) An optimized method for mouse liver sinusoidal endothelial cell isolation. Exp Cell Res 349:291–301PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Schie IW, Wu J, Weeks T, Zern MA, Rutledge JC, Huser T (2011) Label-free characterization of rapid lipid accumulation in living primary hepatocytes after exposure to lipoprotein lipolysis products. J Biophotonics 4:425–434PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Testerink N, Ajat M, Houweling M, Brouwers JF, Pully VV, van Manen H-J, Otto C, Helms JB, Vaandrager AB (2012) Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation. PLoS ONE 7:e34945PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Kochan K, Kus E, Filipek A, Szafrańska K, Chlopicki S, Baranska M (2017) Label-free spectroscopic characterization of live liver sinusoidal endothelial cells (LSECs) isolated from the murine liver. Analyst 142:1308–1319PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Huebert RC, Jagavelu K, Liebl AF, Huang BQ, Splinter PL, LaRusso NF, Urrutia RA (2010) Immortalized liver endothelial cells: a cell culture model for studies of motility and angiogenesis. Lab Invest 90:1770–1781PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 83:59–115CrossRefGoogle Scholar
  155. 155.
    Tirziu D, Giordano FJ, Simons M (2010) Cell communications in the heart. Circulation 122:928–937PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Lee JF, Barrett-O’Keefe Z, Garten RS, Nelson AD, Ryan JJ, Nativi JN, Richardson RS, Wray DW (2016) Evidence of microvascular dysfunction in heart failure with preserved ejection fraction. Heart 102:278–284PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Garlanda C, Parravicini C, Sironi M, DeRossi M, Wainstok de Calmanovici R, Carozzi F, Bussolino F, Colotta F, Mantovani A, Vecchi A (1994) Progressive growth in immunodeficient mice and host cell recruitment by mouse endothelial cells transformed by polyoma middle-sized T antigen: implications for the pathogenesis of opportunistic vascular tumors. Proc Natl Acad Sci U S A 91:7291–7295PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Yeo BS, Mädler S, Schmid T, Zhang W, Zenobi R (2008) Tip-enhanced Raman spectroscopy can see more: the case of cytochrome c. J Phys Chem C 112:4867–4873CrossRefGoogle Scholar
  159. 159.
    Ogawa M, Harada Y, Yamaoka Y, Fujita K, Yaku H, Takamatsu T (2009) Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy. Biochem Biophys Res Commun 382:370–374PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Wood BR, Asghari-Khiavi M, Bailo E, McNaughton D, Deckert V (2012) Detection of nano-oxidation sites on the surface of hemoglobin crystals using tip-enhanced Raman scattering. Nano Lett 12:1555–1560PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Kallaway C, Almond LM, Barr H, Wood J, Hutchings J, Kendall C, Stone N (2013) Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagnosis Photodyn Ther 10:207–219PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Galli R, Uckermann O, Koch E, Schackert G, Kirsch M, Steiner G (2013) Effects of tissue fixation on coherent anti-Stokes Raman scattering images of brain. J Biomed Opt 19:071402CrossRefGoogle Scholar
  163. 163.
    Mariani MM, Lampen P, Popp J, Wood BR, Deckert V (2009) Impact of fixation on in vitro cell culture lines monitored with Raman spectroscopy. Analyst 134:1154–1161PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Kong K, Kendall C, Stone N, Notingher I (2015) Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 89:121–134PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Kendall C, Isabelle M, Bazant-Hegemark F, Hutchings J, Orr L, Babrah J, Baker R, Stone N (2009) Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst 134:1029–1045PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Dybas J, Marzec KM, Pacia MZ, Kochan K, Czamara K, Chrabąszcz K, Staniszewska-Ślęzak E, Małek K, Barańska M, Kaczor A (2016) Raman spectroscopy as a sensitive probe of soft tissue composition—imaging of cross-sections of various organs vs. single spectra of tissue homogenates. Trends Anal Chem 85:117–127CrossRefGoogle Scholar
  167. 167.
    Wrobel TP, Marzec KM, Chlopicki S, Maślak E, Jasztal A, Franczyk-Żarów M, Czyżyńska-Cichoń I, Moszkowski T, Kostogrys RB, Baranska M (2015) Effects of cow carbohydrate high protein (LCHP) diet on atherosclerotic plaque phenotype in ApoE/LDLR−/− mice: FT-IR and Raman imaging. Sci Rep 5:14002PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Kochan K, Chrabaszcz K, Szczur B, Maslak E, Dybasa J, Marzec KM (2016) IR and Raman imaging of murine brains from control and ApoE/LDLR−/− mice with advanced atherosclerosis. Analyst 141:5329–5338PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Zhang J, Fan Y, He M, Ma X, Song Y, Liu M, Xu J (2017) Accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. Oncotarget 8:36824–36831PubMedPubMedCentralGoogle Scholar
  170. 170.
    Surmacki J, Musial J, Kordek R, Abramczyk H (2013) Raman imaging at biological interfaces: applications in breast cancer diagnosis. Mol Cancer 12:48PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Brozek-Pluska B, Musial J, Kordek R, Bailo E, Dieing T, Abramczyk H (2012) Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Analyst 137:3773–3780PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Bratchenko IA, Artemyev DN, Myakinin OO, Khristoforova YA, Moryatov AA, Kozlov SV, Zakharov VP (2017) Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions. J Biomed Opt 22:27005PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Magee ND, Beattie JR, Carland C, Davis R, McManus K, Bradbury I, Fennell DA, Hamilton PW, Ennis M, McGarvey JJ, Elborn JS (2010) Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer. J Biomed Opt 15:026015PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Andreou C, Neuschmelting V, Tschaharganeh DF, Huang CH, Oseledchyk A, Iacono P, Karabeber H, Colen RR, Mannelli L, Lowe SW, Kircher MF (2016) Imaging of liver tumors using surface-enhanced Raman scattering nanoparticles. ACS Nano 10:5015–5026PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Cm Krishna, Rubina S (2015) Raman spectroscopy in cervical cancers: An update. J Cancer Res Ther 11:10–17CrossRefGoogle Scholar
  176. 176.
    Kamemoto LE, Misra AK, Sharma SK, Goodman MT, Luk H, Dykes AC, Acosta T (2010) Near-infrared micro-Raman spectroscopy for in vitro detection of cervical cancer. Appl Spectrosc 64:255–261PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Kast RE, Tucker SC, Killian K, Trexler M, Honn KV, Auner GW (2014) Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev 33:673–693PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Latka I, Dochow S, Krafft C, Dietzek B, Popp J (2013) Fiber optic probes for linear and nonlinear Raman applications—Current trends and future development. Laser Photonics Rev 7:698–731CrossRefGoogle Scholar
  179. 179.
    Lui H, Zhao J, McLean D, Zeng H (2012) Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res 72:2491–2500PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Desroches J, Jermyn M, Pinto M, Picot F, Tremblay MA, Obaid S, Marple E, Urmey K, Trudel D, Soulez G, Guiot MC, Wilson BC, Petrecca K, Leblond F (2018) A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep 8:1792PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Bergholt MS, Zheng W, Lin K, Ho KY, The M, Yeoh KG, So JBY, Huang Z (2011) In vivo diagnosis of esophageal cancer using image-guided Raman endoscopy and biomolecular modeling. Technol Cancer Res Treat 10:103–112PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Bergholt MS, Lin K, Zheng W, Lau DP, Huang Z (2012) In vivo, real-time, transnasal, image-guided Raman endoscopy: defining spectral properties in the nasopharynx and larynx. J Biomed Opt 17:770021CrossRefGoogle Scholar
  183. 183.
    Huang Z, The SK, Zheng W, Lin K, Ho KY, Teh M, Yeoh KG (2010) In vivo detection of epithelial neoplasia in the stomach using image-guided Raman endoscopy. Biosens Bioelectron 26:383–389PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Shenk R, Wang N, Dasari RR, Fitzmaurice M, Feld MS (2009) Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J Biomed Opt 14:54023CrossRefGoogle Scholar
  185. 185.
    Matthäus C, Dochow S, Bergner G, Lattermann A, Romeike BFM, Marple ET, Krafft C, Dietzek B, Brehm BR, Popp J (2012) In vivo characterization of atherosclerotic plaque depositions by Raman-probe spectroscopy and in vitro coherent anti-stokes Raman scattering microscopic imaging on a rabbit model. Anal Chem 84:7845–7851PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Huang Z, McWilliams A, Lui H, McLean DI, Lam S, Zeng H (2003) Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer 107:1047–1052PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Krafft C, Sobottka SB, Schackert G, Salzer R (2005) Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Analyst 130:1070–1077CrossRefGoogle Scholar
  188. 188.
    Duraipandian S, Zheng W, Ng J, Low JJ, Ilancheran A, Huang Z (2012) Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo. Anal Chem 84:5913–5919PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Draga ROP, Grimbergen MCM, Vijverberg PLM, van Swol CFP, Jonges TGN, Kummer JA, Ruud Bosch JLH (2010) In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal Chem 82:5993–5999PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Kumar GL, Rucbeck L (eds) (2009) Immunohistochemical (IHC) Staining Methods. Dako North America, CarpinteriaGoogle Scholar
  191. 191.
    Vendrell M, Maiti KK, Dhaliwal K, Chang Y-T (2013) Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 31:249–257PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P (2006) Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J Raman Spectrosc 37:719–721CrossRefGoogle Scholar
  193. 193.
    Jehn C, Küstner B, Adam P, Marx A, Ströbel P, Schmuckd C, Schlücker S (2009) Water soluble SERS labels comprising a SAM with dual spacers for controlled bioconjugation. Phys Chem Chem Phys 11:7499–7504PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Salehi M, Schneider L, Ströbel P, AMarx A, Packeisend J, Schlücker S (2014) Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G–gold nanocluster conjugates. Nanoscale 6:2361–2367PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Wang X-P, Zhang Y, König M, Papadopoulou E, Walkenfort B, Kasimir-Bauer S, Bankfalvic A, Schlücker S (2016) iSERS microscopy guided by wide field immunofluorescence: analysis of HER2 expression on normal and breast cancer FFPE tissue sections. Analyst 141:5113–5119PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Wang Y, Kang S, Khan A, Ruttner G, Leigh SY, Murray M, Abeytunge S, Peterson G, Rajadhyaksha M, Dintzis S, Javid S, Liu JTC (2016) Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci Rep 6:21242PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Quynh LM, Nam NH, Kong K, Nhung NT, Notingher I, Henini M, Luong NH (2016) Surface-enhanced Raman spectroscopy study of 4-atp on gold nanoparticles for basal cell carcinoma fingerprint detection. J Electron Mater 45:2563–2568CrossRefGoogle Scholar
  198. 198.
    Chen Y, Zheng X, Chen G, He C, Zhu W, Feng S, Xi G, Chen R, Lan F, Zeng H (2011) Immunoassay for LMP1 in nasopharyngeal tissue based on surface-enhanced Raman scattering. Int J Nanomedicine 7:73–82PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Krzysztof Czamara
    • 1
    • 2
  • Ewelina Szafraniec
    • 1
  • Ewelina Wiercigroch
    • 1
  • Szymon Tott
    • 1
  • Grzegorz Zając
    • 1
  • Ewa Machalska
    • 1
  • Monika Dudek
    • 1
  • Dominika Augustynska
    • 2
  • Kamilla Malek
    • 1
    • 2
  • Agnieszka Kaczor
    • 1
    • 2
  • Malgorzata Baranska
    • 1
    • 2
    Email author
  1. 1.Faculty of ChemistryJagiellonian UniversityKrakowPoland
  2. 2.Jagiellonian Centre for Experimental Therapeutics, Jagiellonian UniversityKrakowPoland

Personalised recommendations