Advertisement

Ligand-Core NLO-Phores

Two-Photon Absorption and Two-Photon Excited Emission Properties of Atomically Precise Clusters of Gold and Silver
  • Rodolphe Antoine
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)

Abstract

Functional ligand-protected noble metal cluster nanomaterials with enhanced two-photon absorption and two-photon excited emission may lead to new technologies for bio-imaging applications. In this article, I review experimental and theoretical methodologies allowing detailed investigation of two-photon absorption/emission properties of ligand-protected silver and gold metal clusters. This includes femtosecond two-photon excited fluorescence experimental setups and quantum chemical methodologies based on time-dependent density functional theory. I thoroughly analyze physical phenomena and trends leading to large two-photon absorption/emission responses of model nanoclusters focusing on the effects of the relaxation pathways in the linear and nonlinear optical regime, as well as strategies aiming at enhancing their two-photon emission responses.

Notes

Acknowledgements

Most of the work presented would not have been possible without the fruitful collaborations with Isabelle Russier-Antoine, Franck Bertorelle, Željka Sanader, Marjan Krstić, Philippe Dugourd, Pierre-François Brevet, and Vlasta Bonačić-Koutecký. Therefore, I wish to express my deepest gratitude to them. Furthermore, I would like to acknowledge financial support of the French-Croatian project “International Laboratory for Nano Clusters and Biological Aging, LIA NCBA.”

References

  1. 1.
    de Meulenaere E, Nguyen Bich N, de Wergifosse M, van Hecke K, van Meervelt L, Vanderleyden J, Champagne B, Clays K (2013) Improving the second-order nonlinear optical response of fluorescent proteins: the symmetry argument. J Am Chem Soc 135:4061–4069CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Terenziani F, Katan C, Badaeva E, Tretiak S, Blanchard-Desce M (2008) Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments. Adv Mater 20:4641–4678CrossRefGoogle Scholar
  3. 3.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346–10413CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Polavarapu L, Manna M, Xu Q-H (2011) Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging. Nanoscale 3:429–434CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tu H, Liu Y, Marjanovic M, Chaney EJ, You S, Zhao Y, Boppart SA (2017) Concurrence of extracellular vesicle enrichment and metabolic switch visualized label-free in the tumor microenvironment. Sci Adv 3:e1600675CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Yue S, Slipchenko MN, Cheng JX (2011) Multimodal nonlinear optical microscopy. Laser Photonics Rev 5:496–512CrossRefGoogle Scholar
  8. 8.
    Blanchard-Desce M (2002) Molecular engineering of NLO-phores for new NLO microscopies. CR Phys 3:439–448CrossRefGoogle Scholar
  9. 9.
    Bertorelle F, Hamouda R, Rayane D, Broyer M, Antoine R, Dugourd P, Gell L, Kulesza A, Mitric R, Bonacic-Koutecky V (2013) Synthesis, characterization and optical properties of low nuclearity liganded silver clusters: Ag31(SG)19 and Ag15(SG)11. Nanoscale 5:5637–5643CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Bertorelle F, Russier-Antoine I, Calin N, Comby-Zerbino C, Bensalah-Ledoux A, Guy S, Dugourd P, Brevet P-F, Sanader Ž, Krstić M, Bonačić-Koutecký V, Antoine R (2017) Au10(SG)10: a chiral gold catenane nanocluster with zero confined electrons. Optical properties and first-principles theoretical analysis. J Phys Chem Lett 8:1979–1985CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Russier-Antoine I, Bertorelle F, Kulesza A, Soleilhac A, Bensalah-Ledoux A, Guy S, Dugourd P, Brevet P-F, Antoine R (2016) Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties. Prog Nat Sci-Mater Int 26:455–460CrossRefGoogle Scholar
  12. 12.
    Russier-Antoine I, Bertorelle F, Hamouda R, Rayane D, Dugourd P, Sanader Z, Bonacic-Koutecky V, Brevet P-F, Antoine R (2016) Tuning Ag29 nanocluster light emission from red to blue with one and two-photon excitation. Nanoscale 8:2892–2898CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bellina B, Compagnon I, Bertorelle F, Broyer M, Antoine R, Dugourd P, Gell L, Kulesza A, Mitric R, Bonacic-Koutecky V (2011) Structural and optical properties of isolated noble metal-glutathione complexes: insight into the chemistry of liganded nanoclusters. J Phys Chem C 115:24549–24554CrossRefGoogle Scholar
  14. 14.
    Bellina B, Antoine R, Broyer M, Gell L, Sanader Z, Mitric R, Bonacic-Koutecky V, Dugourd P (2013) Formation and characterization of thioglycolic acid-silver cluster complexes. Dalton T 42:8328–8333CrossRefGoogle Scholar
  15. 15.
    Bonačić-Koutecký V, Kulesza A, Gell L, Mitric R, Antoine R, Bertorelle F, Hamouda R, Rayane D, Broyer M, Tabarin T, Dugourd P (2012) Silver cluster-biomolecule hybrids: from basics towards sensors/ perspective article. Phys Chem Chem Phys 14:9282–9290CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sanader Z, Mitric R, Bonacic-Koutecky V, Bellina B, Antoine R, Dugourd P (2014) Nature of electronic excitations at the metal-bioorganic interface illustrated on histidine-silver hybrids. Phys Chem Chem Phys 16:1257–1261CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sanader Z, Krstic M, Russier-Antoine I, Bertorelle F, Dugourd P, Brevet P-F, Antoine R, Bonacic-Koutecky V (2016) Two-photon absorption of ligand-protected Ag15 nanoclusters. Towards a new class of nonlinear optics nanomaterials. Phys Chem Chem Phys 18:12404–12408CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Russier-Antoine I, Bertorelle F, Calin N, Sanader Z, Krstic M, Comby-Zerbino C, Dugourd P, Brevet P-F, Bonacic-Koutecky V, Antoine R (2017) Ligand-core NLO-phores: a combined experimental and theoretical approach to the two-photon absorption and two-photon excited emission properties of small-ligated silver nanoclusters. Nanoscale 9:1221–1228CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Antoine R, Bonacic-Koutecky V (2018) Liganded silver and gold quantum clusters. Towards a new class of nonlinear optical nanomaterials. Springer, ChamCrossRefGoogle Scholar
  20. 20.
    Bonačić-Koutecký V (2017) Theoretical design of new class of optical materials based on small noble metal nanocluster-biomolecule hybrids and its potential for medical applications. Adv Phys X 2:695–716Google Scholar
  21. 21.
    Pyo K, Thanthirige VD, Kwak K, Pandurangan P, Ramakrishna G, Lee D (2015) Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)–thiolate shell. J Am Chem Soc 137:8244–8250CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jin R, Nobusada K (2014) Doping and alloying in atomically precise gold nanoparticles. Nano Res 7:285–300CrossRefGoogle Scholar
  23. 23.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer Verlag, BerlinCrossRefGoogle Scholar
  24. 24.
    Bonačić-Koutecky V, Veyret V, Mitrić R (2001) Ab initio study of the absorption spectra of Agn (n = 5–8) clusters. J Chem Phys 115:10450–10460CrossRefGoogle Scholar
  25. 25.
    Harbich W, Fedrigo S, Meyer F, Lindsay DM, Lignieres J, Rivoal JC, Kreisle D (1990) Deposition of mass selected silver clusters in rare gas matrices. J Chem Phys 93:8535–8543CrossRefGoogle Scholar
  26. 26.
    Harbich W, Fedrigo S, Buttet J, Lindsay DM (1991) Optical spectroscopy on size selected gold clusters deposited in rare gas matrices. Zeitschrift für Physik D 19:157–159CrossRefGoogle Scholar
  27. 27.
    Harbich W, Fedrigo S, Buttet J (1992) The optical-absorption spectra of small silver clusters (N = 5–11) embedded in argon matrices. Chem Phys Lett 195:613–617CrossRefGoogle Scholar
  28. 28.
    Fedrigo S, Harbich W, Buttet J (1993) Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. Phys Rev B 47:10706–10715CrossRefGoogle Scholar
  29. 29.
    Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Richards CI, Choi S, Hsiang J-C, Antoku Y, Vosch T, Bongiorno A, Tzeng Y-L, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Wu ZK, Jin RC (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–2573CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Diez I, Ras RHA (2011) Fluorescent silver nanoclusters. Nanoscale 3:1963–1970CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:343–362CrossRefGoogle Scholar
  34. 34.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc, Chem Commun: 801–802CrossRefGoogle Scholar
  35. 35.
    Udayabhaskararao T, Pradeep T (2013) New protocols for the synthesis of stable Ag and Au nanocluster molecules. J Phys Chem Lett 4:1553–1564CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kumar S, Bolan MD, Bigioni TP (2010) Glutathione-stabilized magic-number silver cluster compounds. J Am Chem Soc 132:13141–13143CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of a 10.4 kDa Gold: Glutathione cluster compound. J Phys Chem B 102:10643–10646CrossRefGoogle Scholar
  38. 38.
    Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T (2004) Magic-numbered Au-n clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): Isolation and spectroscopic characterization. J Am Chem Soc 126:6518–6519CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 127:5261–5270CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zheng K, Yuan X, Goswami N, Zhang Q, Xie J (2014) Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. RSC Adv 4:60581–60596CrossRefGoogle Scholar
  41. 41.
    Zeng C, Chen Y, Das A, Jin R (2015) Transformation chemistry of gold nanoclusters: from one stable size to another. J Phys Chem Lett 6:2976–2986CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yu Y, Chen X, Yao Q, Yu Y, Yan N, Xie J (2013) Scalable and precise synthesis of thiolated Au10–12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem Mater 25:946–952CrossRefGoogle Scholar
  43. 43.
    Jin R (2015) Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7:1549–1565CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883–5885CrossRefGoogle Scholar
  45. 45.
    Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au-38 nanoparticles. J Am Chem Soc 132:8280–8281CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hamouda R, Bertorelle F, Rayane D, Antoine R, Broyer M, Dugourd P (2013) Glutathione capped gold AuN(SG)M clusters studied by isotope-resolved mass spectrometry. Int J Mass Spectrom 335:1–6CrossRefGoogle Scholar
  47. 47.
    Lu Y, Chen W (2015) Application of mass spectrometry in the synthesis and characterization of metal nanoclusters. Anal Chem 87:10659–10667CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Chakraborty I, Pradeep T (2017) Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev 117:8208–8271CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Weerawardene KLDM, Aikens CM (2016) Theoretical insights into the origin of photoluminescence of Au25(SR)18 nanoparticles. J Am Chem Soc 138:11202–11210CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Weerawardene KLDM, Guidez EB, Aikens CM (2017) Photoluminescence origin of Au38(SR)24 and Au22(SR)18 nanoparticles: a theoretical perspective. J Phys Chem C 121:15416–15423CrossRefGoogle Scholar
  51. 51.
    Weerawardene KLDM, Aikens CM (2018) Origin of photoluminescence of Ag25(SR)18 nanoparticles: ligand and doping effect. J Phys Chem C 122:2440–2447CrossRefGoogle Scholar
  52. 52.
    Fernando A, Weerawardene KLDM, Karimova NV, Aikens CM (2015) Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters. Chem Rev 115:6112–6216CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Devadas MS, Kim J, Sinn E, Lee D, Goodson T, Ramakrishna G (2010) Unique ultrafast visible luminescence in monolayer-protected Au25 clusters. J Phys Chem C 114:22417–22423CrossRefGoogle Scholar
  54. 54.
    Zheng J, Zhou C, Yu M, Liu J (2012) Different sized luminescent gold nanoparticles. Nanoscale 4:4073–4083PubMedPubMedCentralGoogle Scholar
  55. 55.
    Birge RR, Pierce BM (1979) A theoretical analysis of the two-photon properties of linear polyenes and the visual chromophores. J Chem Phys 70:165–178CrossRefGoogle Scholar
  56. 56.
    Przhonska OV, Webster S, Padilha LA, Hu H, Kachkovski AD, Hagan DJ, Van Stryland EW (2010) Two-Photon absorption in near-IR conjugated molecules: design strategy and structure-property relations. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology I: fundamentals and molecular design. Springer, Berlin, pp 105–147CrossRefGoogle Scholar
  57. 57.
    Hu Z, Jensen L (2017) Importance of double-resonance effects in two-photon absorption properties of Au25(SR)18. Chem Sci 8:4595–4601CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Russier-Antoine I, Bertorelle F, Vojkovic M, Rayane D, Salmon E, Jonin C, Dugourd P, Antoine R, Brevet P-F (2014) Non-linear optical properties of gold quantum clusters. The smaller the better. Nanoscale 6:13572–13578CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Bertorelle F, Moulin C, Soleilhac A, Comby-Zerbino C, Dugourd P, Russier-Antoine I, Brevet P-F, Antoine R (2018) Bulky counterions: enhancing the two-photon excited fluorescence of gold nanoclusters. Chem Phys Chem 19:165–168CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Makarov NS, Drobizhev M, Rebane A (2008) Two-photon absorption standards in the 550–1600 nm excitation wavelength range. Opt Express 16:4029–4047CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Kasha M (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19CrossRefGoogle Scholar
  62. 62.
    van Steerteghem N, van Cleuvenbergen S, Deckers S, Kumara C, Dass A, Hakkinen H, Clays K, Verbiest T, Knoppe S (2016) Symmetry breaking in ligand-protected gold clusters probed by nonlinear optics. Nanoscale 8:12123–12127CrossRefPubMedCentralGoogle Scholar
  63. 63.
    le Guevel X, Trouillet V, Spies C, Li K, Laaksonen T, Auerbach D, Jung G, Schneider M (2012) High photostability and enhanced fluorescence of gold nanoclusters by silver doping. Nanoscale 4:7624–7631CrossRefPubMedCentralGoogle Scholar
  64. 64.
    Brach K, Waszkielewicz M, Olesiak-Banska J, Samoc M, Matczyszyn K (2017) Two-photon imaging of 3D organization of bimetallic AuAg nanoclusters in DNA matrix. Langmuir 33:8993–8999CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kindi HA, Mohamed A, Kajimoto S, Zhanpeisov N, Horino H, Shibata Y, Rzeznicka II, Fukumura H (2018) Single bovine serum albumin molecule can hold plural blue-emissive gold nanoclusters: a quantitative study with two-photon excitation. J Photoch Photobio A 357:168–174CrossRefGoogle Scholar
  66. 66.
    Raut SL, Shumilov D, Chib R, Rich R, Gryczynski Z, Gryczynski I (2013) Two photon induced luminescence of BSA protected gold clusters. Chem Phys Lett 561:74–76CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Porret E, Sancey L, Martín-Serrano A, Montañez MI, Seeman R, Yahia-Ammar A, Okuno H, Gomez F, Ariza A, Hildebrandt N, Fleury J-B, Coll J-L, Le Guével X (2017) Hydrophobicity of gold nanoclusters influences their interactions with biological barriers. Chem Mater 29:7497–7506CrossRefGoogle Scholar
  68. 68.
    Shen D, Henry M, Trouillet V, Comby-Zerbino C, Bertorelle F, Sancey L, Antoine R, Coll J-L, Josserand V, Guével XL (2017) Zwitterion functionalized gold nanoclusters for multimodal near infrared fluorescence and photoacoustic imaging. APL Materials 5:053404CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon1-CNRS, Université de LyonVilleurbanne CedexFrance

Personalised recommendations