Spectroscopic Characterization of Silicate Amorphous Materials

  • Włodzimierz Mozgawa
  • Maciej Sitarz
  • Magdalena KrólEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)


In spite of a large amount of the literature on amorphous silicate structure studies and a significantly long time that has passed since the pioneer works of Lebiedev, Zachariasen, and Warren, there are still many doubts concerning the description of their structure. The selection of the correct research method allowing for a description of glass structure, specifically one that yields information on short-range order present in the amorphous state, seems to be especially important. In the framework of this manuscript, vibrational spectroscopy was proposed as a fundamental research method for describing the amorphous structure of glass materials. Interpretation procedures were also presented that enable obtaining the maximum amount of information on glass build on the basis of oscillation spectra.


  1. 1.
    Görlich E (1989) Stan szklisty. Skrypt uczelniany AGH nr 1155, Kraków (in Polish)Google Scholar
  2. 2.
    Turnbull D (1969) Under what conditions can a glass be formed? Contempt Phys 10:473–488CrossRefGoogle Scholar
  3. 3.
    Zallen R (1994) Fizyka ciał amorficznych. PWN, Warszawa (in Polish)Google Scholar
  4. 4.
    Lebedev AA (1921) The polymorphism and annealing of glass. Trans Gos Opt Inst 2:1–20Google Scholar
  5. 5.
    Zachariasen WH (1932) The atomic arrangement in glass. J Am Ceram Soc 17:3841–3857Google Scholar
  6. 6.
    Randall JT, Rooksby HP, Cooper BS (1930) The structure of glasses: the evidence of X-ray diffraction. J Soc Glass Technol 14:219–228Google Scholar
  7. 7.
    Valenkow N, Porai-Koshitz E (1936) X-ray investigations of the glassy state. Nature 137:273–274CrossRefGoogle Scholar
  8. 8.
    Warren BE (1933) X-ray diffraction of vitreous silica. Z Kristallogr 86:349–358Google Scholar
  9. 9.
    Warren BE (1934) X-ray determination of the structure of glass. J Am Ceram Soc 17:249–254CrossRefGoogle Scholar
  10. 10.
    Warren BE, Krutter H, Morningstar O (1936) Fourier analysis of X-ray patterns of vitreous SiO2 and B2O2. J Am Ceram Soc 19:202–206CrossRefGoogle Scholar
  11. 11.
    Wright AC, Leadbetter AL (1976) Diffraction studies of glass structure. Phys Chem Glasses 17:122–145Google Scholar
  12. 12.
    Mozzi RL, Warren BE (1969) The structure of vitreous silica. J Appl Cryst 2:164–172CrossRefGoogle Scholar
  13. 13.
    Tossell JA, Gibbs GV (1978) The use of molecular-orbital calculations on model systems for the prediction of bridging-bond-angle variations in siloxanes, silicates, silicon nitrides and silicon suffides. Acta Crystallogr A 34:463–472CrossRefGoogle Scholar
  14. 14.
    Baur WH (1980) Straight Si–O–Si bridging bonds do exist in silicates and silicon dioxide polymorphs. Acta Crystallogr B 36:2198–2202CrossRefGoogle Scholar
  15. 15.
    Demkina LI (1958) Issledowania zavisimosti swoistw stekoł ot ich sostawa. Izd Obr Prom, MoskwaGoogle Scholar
  16. 16.
    Babcock CL (1977) Silicate glass technology methods. Wiley, New YorkGoogle Scholar
  17. 17.
    Babcock CL (1968) Substructures in silicate glasses. J Am Ceram Soc 51:163–169CrossRefGoogle Scholar
  18. 18.
    Elliott SR (1991) Medium-range structural order in covalent amorphous solids. Nature 354:445–452CrossRefGoogle Scholar
  19. 19.
    Handke M, Mozgawa W (1993) Vibrational spectroscopy of the amorphous silicates. Vib Spectrosc 5:75–84CrossRefGoogle Scholar
  20. 20.
    Sitarz M, Mozgawa W, Handke M (1999) Rings in the structure of silicate glasses. J Mol Struct 511–512:281–285CrossRefGoogle Scholar
  21. 21.
    Sitarz M, Mozgawa W, Handke M (2000) Identification of silicooxygen rings in SiO2 based on IR spectra. Spectrochim Acta A 56:1819–1823CrossRefGoogle Scholar
  22. 22.
    Sitarz M (2011) The structure of simple silicate glasses in the light of middle infrared spectroscopy studies. J Non-Cryst Solid 357:1603–1608CrossRefGoogle Scholar
  23. 23.
    Phillips JC (1986) Comments on “the J.C. Phillips model for vitreous SiO2: a critical appraisal”. Solid State Commun 60:299CrossRefGoogle Scholar
  24. 24.
    Hosemann R, Hentschel MP, Schmeisser U, Bruckner R (1986) Structural model of vitreous silica based on microparacrystal principles. J Non-Cryst Solids 83:223–234CrossRefGoogle Scholar
  25. 25.
    Konnert JH, Karle J (1973) The computation of radial distribution functions for glassy materials. Acta Crystallogr 429:702–710CrossRefGoogle Scholar
  26. 26.
    Konnert JH, Ferguson GA, Karle J (1973) Crystalline ordering in silica and germania glasses. Science 179:177–179CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Konnert JH, D’Antonio P, Karle J (1982) Comparison of radial distribution function for silica glass with those for various bonding topologies: use of correlation function. J Non-Cryst Solids 53:135–144CrossRefGoogle Scholar
  28. 28.
    Goodman CHL (1975) Strained mixed-cluster model for glass structure. Nature 257:370–372CrossRefGoogle Scholar
  29. 29.
    Gaskell PH (1991) Glasses and amorphous materials. In: Zarzycki J (ed) Materials science and technology, vol 9. VCH, Weinheim, Germany, p 175Google Scholar
  30. 30.
    Görlich E (1977) Structure and phase transformations in glass. Rev Int Hautes Temp Refract 14:201–206Google Scholar
  31. 31.
    Görlich E, Błaszczak K (1977) Polymorphic transition in silica glass. Nature 265:39–40CrossRefGoogle Scholar
  32. 32.
    Görlich E (1982) The structure of SiO2—current views. Ceram Int 8:3–16CrossRefGoogle Scholar
  33. 33.
    Verwej H, Konijnendijk WL (1976) Structural units in K2O–PbO–SiO2 glasses by Raman spectroscopy. J Am Ceram Soc 59:517–521CrossRefGoogle Scholar
  34. 34.
    Gaskell PH, Eckersley MC, Barnes AC, Chieux P (1991) Medium-range order in the cation distribution of a calcium silicate glass. Nature 350:675–677CrossRefGoogle Scholar
  35. 35.
    Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New YorkGoogle Scholar
  36. 36.
    Griffiths PR, Pariente GL (1986) Introduction to spectral deconvolution. Trends Anal Chem 5:209–215CrossRefGoogle Scholar
  37. 37.
    Zlokazov VB (1978) UPEAK—spectro-oriented routine for mixture decomposition. Comput Phys Commun 13:389–398CrossRefGoogle Scholar
  38. 38.
    von Meerwall E (1975) A general-purpose routine for the analysis of spectroscopic peak shapes. Comput Phys Commun 10:145–154CrossRefGoogle Scholar
  39. 39.
    Mysen BO, Finger LW, Virgo D, Seifert FA (1982) Curve-fitting of Raman spectra of silicate glasses. Am Mineral 67:686–695Google Scholar
  40. 40.
    von Meerwall E (1975) A fortran code for automatic spectrum analysis on medium-scale computers. Comput Phys Commun 9:351–1359CrossRefGoogle Scholar
  41. 41.
    Handke M, Mozgawa W, Nocuń M (1994) Specific features of the IR spectra of silicate glasses. J Mol Struct 325:129–136CrossRefGoogle Scholar
  42. 42.
    Lazarev AN, Mirgorodsky AP (1991) Molecular force constants in dynamical model of α-quartz. Phys Chem Miner 18:231–243CrossRefGoogle Scholar
  43. 43.
    Dowty E (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals. Phys Chem Miner 14:80–93CrossRefGoogle Scholar
  44. 44.
    Dowty E (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals. Phys Chem Miner 14:122–138CrossRefGoogle Scholar
  45. 45.
    Dowty E (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals. Phys Chem Miner 14:542–552CrossRefGoogle Scholar
  46. 46.
    Handke M, Mozgawa W (1995) Model quasi-molecule Si2O as an approach in the IR spectra description glassy and crystalline framework silicates. J Mol Struct 348:341–344CrossRefGoogle Scholar
  47. 47.
    Bell RJ, Dean P (1970) Atomic vibrations in vitreous silica. Discuss Faraday Soc 50:55–61CrossRefGoogle Scholar
  48. 48.
    Laughlin RB, Joannopoulos JD (1977) Phonons in amorphous silica. Phys Rev B 16:2942–2952CrossRefGoogle Scholar
  49. 49.
    Barrow GM (1962) Introduction to molecular spectroscopy. MCGraw-Hill Book Company Inc, New YorkGoogle Scholar
  50. 50.
    Galeener FL, Mikkelsen JC (1981) Vibrational dynamics in 18O-substituted vitreous SiO2. Phys Rev B 23:5527–5530CrossRefGoogle Scholar
  51. 51.
    Sato RK, McMillan PF (1987) An infrared and Raman study of the isotopic species of alpha-quartz. J Phys Chem 91:3494–3498CrossRefGoogle Scholar
  52. 52.
    Rakow AV (1962) Temperature dependence of the line width of infrared absorption spectra. Opt Spektr 13:369–373Google Scholar
  53. 53.
    Khanna RK, Stranz DD, Donn B (1981) A spectroscopic study of intermediates in the condensation of refractory smokes: matrix isolation experiments of SiO. J Chem Phys 74:2108–2115CrossRefGoogle Scholar
  54. 54.
    Görlich E, Błaszczak K, Sieminska G (1974) Infra-red studies of vitreous silica at elevated temperatures. J Mat Sci 9:1926–1932CrossRefGoogle Scholar
  55. 55.
    Taylor WR (1990) Application of infrared spectroscopy to studies of silicate glass structure: examples from the melilite glasses and the systems Na2O–SiO2 and Na2O–Al2O3–SiO2. Proc Indian Acad Sci 99:99–117Google Scholar
  56. 56.
    Shiraishi Y, Kusabiraki K (1990) Infrared spectrum oh high temperature melts by means of emission spectroscopy. High Temp Sci 28:67–77Google Scholar
  57. 57.
    Handke M, Nocuń M (1997) Vibrational spectroscopy of lithium silicates and aluminosilicates in crystalline form. Mikrochim Acta 14:507–510Google Scholar
  58. 58.
    Sharma SK, Philpotts JA, Matson DW (1985) Ring distributions in alkali- and alkaline-earth aluminosilicate framework glasses—a Raman spectroscopic study. J Non-Cryst Solids 71:403–410CrossRefGoogle Scholar
  59. 59.
    Tossel JA (1993) A theoretical study of the molecular basis of the Al avoidance rule and of the spectral characteristics of Al–O–Al linkages. Am Mineral 78:911–920Google Scholar
  60. 60.
    Tarte P (1967) Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta A 23:2127–2143CrossRefGoogle Scholar
  61. 61.
    Sitarz M (2008) Influence of modifying cations on the structure and texture of silicate–phosphate glasses. J Mol Struct 887:237–248CrossRefGoogle Scholar
  62. 62.
    Sitarz M, Rokita M, Handke M, Galuskin EW (2003) Structural studies of the NaCaPO4–SiO2 sol-gel derived materials. J Mol Struct 651–653:489–498CrossRefGoogle Scholar
  63. 63.
    Li H, Liu S, Zhang T, Wu H, Guo S (2018) The evolution of the network structure in tin-fluoro-phosphate glass with increasing temperature. J Non-Crystal Solids 492:84–93CrossRefGoogle Scholar
  64. 64.
    Sitarz M, Bulat K, Olejniczak Z (2012) Structure and microstructure of glasses from NaCaPO4–SiO2–BPO4 system. Vib Spectrosc 61:72–77CrossRefGoogle Scholar
  65. 65.
    Bułat K, Sitarz M, Wajda A (2014) Influence of aluminium and boron ions on the crystallization of silicate-phosphate glasses from NaCaPO4–SiO2 system. J Non-Cryst Solids 401:2007–2012CrossRefGoogle Scholar
  66. 66.
    Kaur R, Singh S, Pandey OP (2013) Absorption spectroscopic studies on gamma irradiated bismuth borosilicate glasses. J Mol Struct 1049:386–391CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Włodzimierz Mozgawa
    • 1
  • Maciej Sitarz
    • 1
  • Magdalena Król
    • 1
    Email author
  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations