The Luminescent Properties of Photonic Glasses and Optical Fibers

  • Jacek Zmojda
  • Marcin Kochanowicz
  • Piotr Miluski
  • Dominik DoroszEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)


In this chapter, the visible luminescent properties of antimony-germanate and gallo-germanate glasses, glass-ceramics and optical fibers co-doped with different rare-earth (RE) systems (e.g., Sm3+, Eu3+, Yb3+/Tm3+, Yb3+/Ho3+, Yb3+/Tm3+/Ho3+, Yb3+/Tb3+, Yb3+/Eu3+) have been analyzed. Emission was obtained by direct excitation of RE ions or in case of co-doped systems by donor-acceptor energy transfer and upconversion processes. Novel constructions of double-clad, offset core, double-core, and RE triply doped optical fibers have been presented. Moreover, the effect of the structure modification of antimony-germanate glasses on the luminescence shaping has been also presented. Another, presented scientific area is investigation of plasmon effect in Ag0/Eu3+ co-doped glasses and optical fibers. The optimization of Ag0/Eu3+ content and formation of silver nanoparticles process (thermal annealing) in order to enhance luminescence has been presented.



The research activities were supported by the National Science Centre (Poland) granted on the basis of the decision No. DEC-2016/21/D/ST7/03453 and the project No. 2016/23/B/ST8/00706.


  1. 1.
    Tanabe S (2002) Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. C R Chim 5:815–824CrossRefGoogle Scholar
  2. 2.
    Bünzli J-CG, Eliseeva SV (2010) Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J Rare Earths 28:824–842CrossRefGoogle Scholar
  3. 3.
    Jacquier B (1997) Rare earth-doped fiber lasers and amplifiers. In: Rotman SR (ed) Wide-gap luminescent materials: theory and applications. Springer, Boston, pp 303–365CrossRefGoogle Scholar
  4. 4.
    Kochanowicz M, Dorosz D, Zmojda J, Dorosz J, Pisarska J, Pisarski WA (2014) Up-conversion luminescence of Tb3+ ions in germanate glasses under diode-laser excitation of Yb3+. Opt Mater Express 4:1050–1056CrossRefGoogle Scholar
  5. 5.
    Gu SQ, Ramachandran S, Reuter EE, Turnbull DA, Verdeyen JT, Bishop SG (1995) Novel broad-band excitation of Er3+ luminescence in chalcogenide glasses. Appl Phys Lett 66:670–672CrossRefGoogle Scholar
  6. 6.
    Heo J, Chung WJ (2014) Rare-earth-doped chalcogenide glass for lasers and amplifiers. In: Adam J-L, Zhang X (eds) Chalcogenide glasses. Woodhead Publishing, Sawston, pp 347–380CrossRefGoogle Scholar
  7. 7.
    Li L, Bian J, Jiao Q, Liu Z, Dai S, Lin C (2016) GeS2–In2S3–CsI chalcogenide glasses doped with rare earth ions for near- and mid-IR luminescence. Sci Rep 6:37577CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lucas J, Adam J-L (1992) Rare-earth doped fluoride glass fibres. J Alloy Compd 180:27–35CrossRefGoogle Scholar
  9. 9.
    Tang Z, Furniss D, Fay M, Sakr H, Sójka L, Neate N, Weston N, Sujecki S, Benson TM, Seddon AB (2015) Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass. Opt Mater Express 5:870–886CrossRefGoogle Scholar
  10. 10.
    Fedorov PP, Luginina AA, Popov AI (2015) Transparent oxyfluoride glass ceramics. J Fluorine Chem 172:22–50CrossRefGoogle Scholar
  11. 11.
    Jha A, Richards B, Jose G, Teddy-Fernandez T, Joshi P, Jiang X, Lousteau J (2012) Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Prog Mater Sci 57:1426–1491CrossRefGoogle Scholar
  12. 12.
    Polishchuk SA, Ignat’eva LN, Marchenko YV, Bouznik VM (2011) Oxyfluoride glasses (a review). Glass Phys Chem 37:1–20CrossRefGoogle Scholar
  13. 13.
    Yonezawa S, Kim J-H, Takashima M (2010) Preparation and Properties of Rare-Earth-Containing Oxide Fluoride Glasses. In: Tressaud A (ed) Functionalized inorganic fluorides: synthesis, characterization & properties of nanostructured solids. Wiley, New YorkCrossRefGoogle Scholar
  14. 14.
    Dorosz D, Zmojda J, Kochanowicz M (2013) Investigation on broadband near-infrared emission in Yb3+/Ho3+ co-doped antimony–silicate glass and optical fiber. Opt Mater 35:2577–2580CrossRefGoogle Scholar
  15. 15.
    Hedden WA, King BW (1956) Antimony oxide glasses. J Am Ceram Soc 39:218–222CrossRefGoogle Scholar
  16. 16.
    Dorosz D, Zmojda J, Kochanowicz M, Miluski P, Jelen P, Sitarz M (2015) Structural and optical study on antimony-silicate glasses doped with thulium ions. Spectroch Acta A 134:608–613CrossRefGoogle Scholar
  17. 17.
    Nalin M, Poulain M, Poulain M, Ribeiro SJL, Messaddeq Y (2001) Antimony oxide based glasses. J Non Cryst Solid 284:110–116CrossRefGoogle Scholar
  18. 18.
    Ouannes K, Soltania MT, Poulain M, Boulonc G, Alombert-Goget G, Guyot Y, Pillonnet A, Lebbou K (2014) Spectroscopic properties of Er3+-doped antimony oxide glass. J Alloy Compd 603:132–135CrossRefGoogle Scholar
  19. 19.
    Som T, Karmakar B (2010) Structure and properties of low-phonon antimony glasses and nano glass-ceramics in K2O–B2O3–Sb2O3 system. J Non-Cryst Solid 356:987–999CrossRefGoogle Scholar
  20. 20.
    Som T, Karmakar B (2011) Nephelauxetic effect of low phonon antimony oxide glass in absorption and photoluminescence of rare-earth ions. Spectrochim Acta A 79:1766–1782CrossRefGoogle Scholar
  21. 21.
    Som T, Karmakar B (2011) One-step synthesis and properties of monolithic photoluminescent ruby colored cuprous oxide antimony oxide glass nanocomposites. J Alloy Compd 509:4999–5007CrossRefGoogle Scholar
  22. 22.
    Som T, Singh SP, Karmakar B (2016) Plasmonic antimony and bismuth oxide glass nanocomposites: synthesis and enhanced photoluminescence. In: Karmakar B, Rademann K, Stepanov AL (eds) Glass nanocomposites. William Andrew Publishing, Boston, pp 215–238CrossRefGoogle Scholar
  23. 23.
    Balda R, Fernández J, Pablos Ad, Fdez-Navarro JM (1999) Spectroscopic properties of Pr3+ ions in lead germanate glass. J Phys Condensed Matt 11:7411–7421CrossRefGoogle Scholar
  24. 24.
    Cai M, Zhou B, Tian Y, Zhou J, Xu S, Zhang J (2016) Broadband mid-infrared 2.8 μm emission in Ho3+/Yb3+-codoped germanate glasses. J Lumin 171:143–148CrossRefGoogle Scholar
  25. 25.
    Pisarski WA, Pisarska J, Dorosz D, Dorosz J (2015) Rare earths in lead-free oxyfluoride germanate glasses. Spectrochimi Acta A 134:587–591CrossRefGoogle Scholar
  26. 26.
    Rachkovskaya GE, Zakharevich GB (2012) Germanate lead-tellurite glasses for optical light filters. Glass Ceram 68:385–388CrossRefGoogle Scholar
  27. 27.
    Wang R, Yang Z, Zhou D, Song Z, Qiu J (2014) Structure and luminescent property of Er3+-doped germanate glasses. J Non Cryste Solid 383:200–204CrossRefGoogle Scholar
  28. 28.
    Zmojda J, Kochanowicz M, Miluski P, Leśniak M, Sitarz M, Pisarski W, Pisarska J, Dorosz D (2016) Effect of GeO2 content on structural and spectroscopic properties of antimony glasses doped with Sm3+ ions. J Mol Struct 1126:207–212CrossRefGoogle Scholar
  29. 29.
    Zhao M, Liu Y, Ma S, Liu D, Wang K (2018) Investigation of energy transfer mechanism and luminescence properties in Eu3+ and Sm3+ co-doped ZnWO4 phosphors. J Lumin 202:57–64CrossRefGoogle Scholar
  30. 30.
    Zmojda J, Kochanowicz M, Miluski P, Baranowska A, Pisarski WA, Pisarska J, Jadach R, Sitarz M, Dorosz D (2017) Optical characterization of nano- and microcrystals of EuPO4 created by one-step synthesis of antimony-germanate-silicate glass modified by P2O5. Mater 10:1059CrossRefGoogle Scholar
  31. 31.
    Zmojda J, Kochanowicz M, Miluski P, Lukowiak A, Pisarski WA, Pisarska J, Marciniak M, Ferrari M, Sitarz M, Dorosz D (2016) Rare-earth doped optical fibers with nano-phase glass-ceramic structures. In: 18th International conference on transparent optical networks (ICTON), 10–14 July 2016, pp 1–4Google Scholar
  32. 32.
    Zmojda J, Kochanowicza M, Miluski P, Baranowska A, Basa A, Jadach R, Sitarz M, Dorosz D (2018) The influence of Ag content and annealing time on structural and optical properties of SGS antimony-germanate glass doped with Er3+ ions. J Mol Struct 1160:428–433CrossRefGoogle Scholar
  33. 33.
    Zmojda J, Miluski P, Baranowska A, Jadach R, Kochanowicz M (2017) Local field effect in antimony-germanate glasses co-doped with rare-earth ions and silver nanoparticles. Photonics Lett Poland 9:107–109CrossRefGoogle Scholar
  34. 34.
    Zmojda J, Miluski P, Kochanowicz M (2018) Nanocomposite antimony-germanate-borate glass fibers doped with Eu3+ ions with self-assembling silver nanoparticles for photonic applications. Appl Sci 8:790CrossRefGoogle Scholar
  35. 35.
    Zmojda J, Kochanowicz M, Miluski P, Baranowska A, Pisarski WA, Pisarska J, Jadach R, Sitarz M, Dorosz D (2018) Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+ and Ag nanoparticles. Spectrochim Acta A 201:1–7CrossRefGoogle Scholar
  36. 36.
    Henderson GS (2007) The germanate anomaly: what do we know? J Non-Cryst Solid 353:1695–1704CrossRefGoogle Scholar
  37. 37.
    Candeloro P, Iuele E, Perozziello G, Coluccio ML, Gentile F, Malara N, Mollace V, Di Fabrizio E (2017) Plasmonic nanoholes as SERS devices for biosensing applications: an easy route for nanostructures fabrication on glass substrates. Microelectron Eng 175:30–33CrossRefGoogle Scholar
  38. 38.
    Schneider R, Schneider R, de Campos EA, Santos Mendes JB, Felix JF, Santa-Cruz PA (2017) Lead-germanate glasses: an easy growth process for silver nanoparticles and their promising applications in photonics and catalysis. RSC Adv 7:41479–41485CrossRefGoogle Scholar
  39. 39.
    Kochanowicz M, Dorosz D, Zmojda J, Miluski P, Dorosz J, Pisarska J, Pisarski WA (2015) Upconversion emission in antimony–germanate double-clad optical fiber co-doped with Yb3+/Tm3+ ions. Opt Mater 41:108–111CrossRefGoogle Scholar
  40. 40.
    Zmojda J, Kochanowicz M, Miluski P, Dorosz J, Pisarska J, Pisarski WA, Dorosz D (2016) Investigation of up conversion luminescence in antimony–germanate double-clad two cores optical fiber co-doped with Yb3+/Tm3 + and Yb3+/Ho3+ ions. J Lumin 170:795–800CrossRefGoogle Scholar
  41. 41.
    Zmojda J, Kochanowicz M, Miluski P, Righini GC, Ferrari M, Dorosz D (2016) Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber. Opt Mater 58:279–284CrossRefGoogle Scholar
  42. 42.
    Zmojda J, Dorosz D, Kochanowicz M, Miluski P, Dorosz J (2013) White upconversion in Yb3+/Tm3+/Ho3+co-doped antimony-germanate glasses. Acta Phys Polon A 124:598–601CrossRefGoogle Scholar
  43. 43.
    Kochanowicz M, Zmojda J, Miluski P, Pisarska J, Pisarski WA, Dorosz D (2015) NIR to visible upconversion in double-clad optical fiber co-doped with Yb3+/Ho3+. Opt Mater Express 5:1505–1510CrossRefGoogle Scholar
  44. 44.
    Jadach R, Zmojda J, Kochanowicz M, Miluski P, Pisarska J, Pisarski WA, Sołtys M, Lesniak M, Sitarz M, Dorosz D (2018) Investigation of the aluminum oxide content on structural and optical properties of germanium glasses doped with RE ions. Spectrochim Acta A 201:143–152CrossRefGoogle Scholar
  45. 45.
    Kochanowicz M, Zmojda J, Miluski P, Ragin T, Pisarski WA, Pisarska J, Jadach R, Sitarz M, Dorosz D (2017) Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+. J Alloy Compd 727:1221–1226CrossRefGoogle Scholar
  46. 46.
    Dorosz D, Kochanowicz M, Zmojda J (2014) Blue upconversion emission in germanate glass co-doped with Yb3+/Tm3+ ions. Int J Appl Glass Sci 5:393–400CrossRefGoogle Scholar
  47. 47.
    Kochanowicz M, Zmojda J, Miluski P, Sitarz M, Pisarska J, Pisarski WA, Dorosz D (2016) Analysis of upconversion luminescence in germanate glass and optical fiber codoped with Yb3+/Tb3+. Appl Opt 55:2370–2374CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kochanowicz M, Zmojda J, Ragin T, Miluski P, Jelen P (2016) Up-conversion luminescence in germanate glass and double-clad optical fibre co-doped with Yb3+/Eu3+ ions. Opto-Electron Rev 24:155–161CrossRefGoogle Scholar
  49. 49.
    Kochanowicz M, Zmojda J, Dorosz D (2014) Fluorosilicate and fluorophosphate superfluorescent multicore optical fibers co-doped with Nd3+/Yb3+. Opt Fiber Technol 20:245–249CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jacek Zmojda
    • 1
  • Marcin Kochanowicz
    • 1
  • Piotr Miluski
    • 1
  • Dominik Dorosz
    • 2
    Email author
  1. 1.Faculty of Electrical EngineeringBialystok University of TechnologyBiałystokPoland
  2. 2.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations