In Situ and Operando Techniques in Catalyst Characterisation and Design

  • Przemysław JodłowskiEmail author
  • Joanna Łojewska
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)


This chapter intends to present the classical and modern techniques that are used for in situ characterisation of catalytic materials. Determination of the structure of the catalyst presents three main problems: (1) heterogeneous catalysis phenomena are limited to the outer surface of the material where the molecules adsorb and react, and for this reason, there are only a few methods able to assess catalyst surface structure and composition; (2) the catalyst surface under reaction conditions and upon the influence of the reacting agents is different from that occurring under ambient conditions, which limits the application of the analytical methods to those which operate at normal or elevated pressures and high temperatures, (3) catalytic materials are complex and heterogeneous, so many analytical methods, including surface imaging, should be employed in order to understand the structure–activity relationships. The remedy for the problems is the application of in situ analyses that rely on several complementary spectroscopic methods and utilise surface sensitive probe molecules. Different kinds of probe molecules are described: from universal probes to specific ones that enable the determination of acidic and basic activity. The IR, Raman and UV-Vis methods are presented here and described using examples from the literature. New trends in in situ experimentation involve time-resolved techniques for studying fast reactions, fluorescence methods and coupled techniques for surface in situ imaging.



This work was partially supported by National Centre for Research and Development decision No. LIDER/204/L-6/14/NCBR/2015 and by the National Science Foundation project 2013/09/B/ST8/00171.


  1. 1.
    Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. WileyGoogle Scholar
  2. 2.
    Haw JF (2002) In-situ spectroscopy in heterogeneous catalysis. Wiley-VCHGoogle Scholar
  3. 3.
    Daydov A (2003) Molecular spectroscopy of oxide catalyst surfaces. WileyGoogle Scholar
  4. 4.
    Weckhuysen BM (2002) Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem Commun 2:97–110CrossRefGoogle Scholar
  5. 5.
    Banares MA (2005) Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal Today 100:71–77CrossRefGoogle Scholar
  6. 6.
    Weckhuysen BM (2004) In-situ spectroscopy of catalysts. In: Weckhuysen BM (ed) In-situ spectroscopy of catalysts. American Scientific Publishers, Stevenson Ranch, CA, pp 1–12Google Scholar
  7. 7.
    Ryczkowski J (2001) IR spectroscopy in catalysis. Catal Today 68:263–381CrossRefGoogle Scholar
  8. 8.
    Niemantsverdriet JW (2007) Spectroscopy in catalysis. Wiley-VCH Verlag GmbH & Co, KGaA, WeinheimCrossRefGoogle Scholar
  9. 9.
    Frenken J, Groot I (eds) (2017) Operando research in heterogeneous catalysis. Springer Nature, Cham, SwitzerlandGoogle Scholar
  10. 10.
    Tarach K, Góra-Marek K, Tekla J, Brylewska K, Datka J, Mlekodaj K, Makowski W, Igualada López MC, Martínez Triguero J, Rey F (2014) Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility. J Catal 312:46–57CrossRefGoogle Scholar
  11. 11.
    Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614CrossRefGoogle Scholar
  12. 12.
    Lee AF, Wilson K (2015) Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catal Today 242:3–18CrossRefGoogle Scholar
  13. 13.
    Knozinger H (1993) Infrared spectroscopy as a probe of surface acidity. In: Joyner RW, van Santen RA (eds) Elementary reaction steps in heterogeneous catalysis. Springer Science + Business Media B.V., pp 267–285Google Scholar
  14. 14.
    Hadjiivanov KI, Vayssilov GN (2002) Characterisation of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv Catal 47:307–511Google Scholar
  15. 15.
    Taylor HS (1925) A theory of the catalytic surface. Proc R Soc A 108:105–111CrossRefGoogle Scholar
  16. 16.
    Barzetti T, Selli E, Moscotti D, Forni L (1996) Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. J Chem Soc, Faraday Trans 92:1401–1407CrossRefGoogle Scholar
  17. 17.
    Lercher JA, Gründling C, Eder-Mirth G (1996) Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catal Today 27:353–376CrossRefGoogle Scholar
  18. 18.
    Halasz I (2010) Silica and silicates in modern catalysis. Transworld Research NetworkGoogle Scholar
  19. 19.
    Boroń P, Chmielarz L, Gil B, Marszałek B, Dzwigaj S (2016) Experimental evidence of NO SCR mechanism in the presence of the BEA zeolite with framework and extra-framework cobalt species. Appl Catal B Environ 198:457–470CrossRefGoogle Scholar
  20. 20.
    Barthomeuf D (1996) Basic zeolites: characterization and uses in adsorption and catalysis. Catal Rev Sci Eng 38:521–612CrossRefGoogle Scholar
  21. 21.
    Chlebda D, Stachurska P, Jędrzejczyk R, Kuterasiński Ł, Dziedzicka A, Górecka S, Chmielarz L, Łojewska J, Sitarz M, Jodłowski PJ (2018) DeNOx abatement over sonically prepared iron-substituted Y, USY and MFI zeolite catalysts in lean exhaust gas conditions. Nanomaterials 8:21CrossRefGoogle Scholar
  22. 22.
    Ochońska J, McClymont D, Jodłowski PJ, Knapik A, Gil B, Makowsk A, Łasocha W, Kołodziej A, Kolaczkowski ST, Łojewska J (2012) Copper exchanged ultrastable zeolite Y—a catalyst for NH3-SCR of NOx from stationary biogas engines. Catal Today 191:6–11CrossRefGoogle Scholar
  23. 23.
    Lavalley JC (1996) Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catal Today 27:377–401CrossRefGoogle Scholar
  24. 24.
    Kryca J, Jodłowski PJ, Iwaniszyn M, Gil B, Sitarz M, Kolodziej A, Lojewska T, Lojewska J (2016) Cu SSZ-13 zeolite catalyst on metallic foam support for SCR of NOx with ammonia: catalyst layering and characterisation of active sites. Catal Today 268:142–149CrossRefGoogle Scholar
  25. 25.
    Góra-Marek K, Gil B, Datka J (2009) Quantitative IR studies of the concentration of Co2 + and Co3+ sites in zeolites CoZSM-5 and CoFER. Appl Catal A Gen 353:117–122CrossRefGoogle Scholar
  26. 26.
    Góra-Marek K, Gil B, Śliwa M, Datka J (2007) An IR spectroscopy study of Co sites in zeolites CoZSM-5. Appl Catal A Gen 330:33–42CrossRefGoogle Scholar
  27. 27.
    Ciuparu D, Bensalem A, Pfefferle L (2000) Pd–Ce interactions and adsorption properties of palladium: CO and NO TPD studies over Pd–Ce/Al2O3 catalysts. Appl Catal B Environ 26:241–255CrossRefGoogle Scholar
  28. 28.
    Chin SY, Williams CT, Amiridis MD (2006) In situ FT-IR studies of CO adsorption on fresh Mo2C/Al2O3 catalyst. J Phys Chem B 82:871–882CrossRefGoogle Scholar
  29. 29.
    Feio LSF, Hori CE, Damyanova S, Noronha FB, Cassinelli WH, Marques CMP, Bueno JMC (2007) The effect of ceria content on the properties of Pd/CeO2/Al2O3 catalysts for steam reforming of methane. Appl Catal A Gen 316:107–116CrossRefGoogle Scholar
  30. 30.
    Hadjiivanov K, Knözinger H (2000) FTIR study of low-temperature CO adsorption on Cu-ZSM-5: Evidence of the formation of Cu2+(CO)2 species. J Catal 191:480–485CrossRefGoogle Scholar
  31. 31.
    Datka J, Kozyra P (2005) TPD–IR studies of CO desorption from zeolites CuY and CuX. J Mol Struct 744–747:991–996CrossRefGoogle Scholar
  32. 32.
    Rejmak P, Broclawik E (2008) Nitrogen monoxide interaction with Cu (I)sites in zeolites X and Y: quantum chemical calculations and IR studies. J Phys Chem C 112:17998–18010CrossRefGoogle Scholar
  33. 33.
    Farneth WE, Staley RH, Sleight AW (1986) Stoichiometry and structural effects in alcohol chemisorption/temperature-programmed desorption on MoO3. J Am Chem Soc 108:2327–2332CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Benaissa M, Travert J, Lavalley J (1985) Microcalorimetric and Fourier Transform infrared spectroscopic studies of methanol adsorption on Al2O3. J Phys Chem 89:5433–5439CrossRefGoogle Scholar
  35. 35.
    Busca G, Forzatti P, Lavalley JC, Tronconi E (1985) A TPD, FT-IR and catalytic study of the interaction of methanol with pure and KOH doped TiO2 anatase. Stud Surf Sci Catal 20:15–24CrossRefGoogle Scholar
  36. 36.
    Rossi PF, Busca G, Lorenzelli V, Saur O, Lavalley JC (1987) Microcalorimetric and FT-IR spectroscopic study of the adsorption of isopropyl alcohol and hexafluoroisopropyl alcohol on titanium dioxide. Langmuir 3:52–58CrossRefGoogle Scholar
  37. 37.
    Badlani M, Wachs IE (2001) Methanol: a “smart” chemical probe molecule. Catal Lett 75:137–149CrossRefGoogle Scholar
  38. 38.
    Mao C-F, Vannice MA (1995) Formaldehyde oxidation over Ag catalysts. J Catal 154:230–244CrossRefGoogle Scholar
  39. 39.
    Busca G (1999) The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Phys Chem Chem Phys 1:723–736CrossRefGoogle Scholar
  40. 40.
    Vorob’eva MP, Greish AA, Ivanov AV, Kustov LM (2000) Preparation of catalyst carriers on the basis of alumina supported on metallic gauzes. Appl Catal A Gen 199:257–261CrossRefGoogle Scholar
  41. 41.
    Jacobs G, Williams L, Graham U, Thomas GA, Sparks DE, Davis B (2003) Low temperature water-gas shift: in situ DRIFTS-reaction study of ceria surface area on the evolution of formates on Pt/CeO2 fuel processing catalysts for fuel cell applications. Appl Catal A Gen 252:107–118CrossRefGoogle Scholar
  42. 42.
    Armaroli T, Minoux D, Gautier Euzen P (2003) A DRIFTS study of Mo/alumina interaction: from Mo/boehmite solution to Mo/γAl2O3 support. Appl Catal A Gen 251:241–253CrossRefGoogle Scholar
  43. 43.
    Liu X (2008) DRIFTS study of surface of γ -alumina and Its dehydroxylation. J Phys Chem C 112:5066–5073CrossRefGoogle Scholar
  44. 44.
    Kung MC, Lin SSY, Kung HH (2012) In situ infrared spectroscopic study of CH4 oxidation over Co-ZSM-5. Top Catal 55:108–115CrossRefGoogle Scholar
  45. 45.
    Ferri D, Bürgi T, Baiker A (2001) Pt and Pt/Al2O3 thin films for investigation of catalytic solid-liquid interfaces by ATR-IR spectroscopy: CO adsorption, H2-induced reconstruction and surface-enhanced absorption. J Phys Chem B 105:3187–3195CrossRefGoogle Scholar
  46. 46.
    Ferri D, Bürgi T, Baiker A (2002) Probing boundary sites on a Pt/Al2O3 model catalyst by CO2 hydrogenation and in situ ATR-IR spectroscopy of catalytic solid–liquid interfaces. Phys Chem Chem Phys 4:2667–2672CrossRefGoogle Scholar
  47. 47.
    Burgener M, Wirz R, Mallat T, Baiker A (2004) Nature of catalyst deactivation during citral hydrogenation: a catalytic and ATR-IR study. J Catal 228:152–161CrossRefGoogle Scholar
  48. 48.
    Grabow K, Bentrup U (2014) Homogeneous catalytic processes monitored by combined in situ. ACS Catal 4:2153–2164CrossRefGoogle Scholar
  49. 49.
    Rabeah J, Bentrup U, StoBer R, Bruckner A (2015) Selective alcohol oxidation by a copper TEMPO catalyst: mechanistic insights by simultaneously coupled operando EPR/UV-Vis/ATR-IR spectroscopy. Angew Chemie Int Ed 54:11791–11794CrossRefGoogle Scholar
  50. 50.
    Ohlin L, Bazin P, Thibault-Starzyk F, Hedlund J, Mattias Grahn M (2013) Adsorption of CO2, CH4, and H2O in zeolite ZSM-5 studied using in situ ATR-FTIR spectroscopy. J Phys Chem C 117:16972–16982CrossRefGoogle Scholar
  51. 51.
    Savara A, Weitz E (2014) Elucidation of intermediates and mechanisms in heterogeneous catalysis using infrared spectroscopy. Annu Rev Phys Chem 65:249–273CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Xu Z, Yu J, Jaroniec M (2015) Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. Appl Catal B Environ 163:306–312CrossRefGoogle Scholar
  53. 53.
    Macina D, Piwowarska Z, Góra-Marek K, Tarach K, Rutkowska M, Girman V, Blachowski A, Chmielarz L (2016) SBA-15 loaded with iron by various methods as catalyst for DeNOx process. Mater Res Bull 78:72–82CrossRefGoogle Scholar
  54. 54.
    Murakami N, Koga N (2016) In situ photoacoustic FTIR studies on photocatalytic oxidation of 2-propanol over titanium(IV) oxide. Catal Commun 83:1–4CrossRefGoogle Scholar
  55. 55.
    Qi L, Cheng B, Yu J, Ho W (2016) High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature. Elsevier BVGoogle Scholar
  56. 56.
    Haw JF (2002) In-situ spectroscopy in heterogeneous catalysis. Wiley-VCHGoogle Scholar
  57. 57.
    Rasmussen SB, Portela R, Bazin P, Ávila P, Banares MA, Daturi M (2018) Transient operando study on the NH3/NH4+ interplay in V-SCR monolithic catalysts. Appl Catal B Environ 224:109–115CrossRefGoogle Scholar
  58. 58.
    Thibault-Starzyk F, Mauge F (2012) Infrared Spectroscopy. In: Che M, Védrine J (eds) Characterization of solid materials and heterogeneous catalysts. From structure to surface reactivity. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 3–48Google Scholar
  59. 59.
    Benaliouche F, Boucheffa Y, Thibault-Starzyk F (2012) In situ FTIR studies of propene adsorption over Ag- and Cu-exchanged Y zeolites. Microporous Mesoporous Mater 147:10–16CrossRefGoogle Scholar
  60. 60.
    El-Roz M, Bazin P, Daturi M, Thibault-Starzyk F (2013) Operando IR coupled to SSITKA for photocatalysis: reactivity and mechanistic studies. ACS Catal 3:2790–2798CrossRefGoogle Scholar
  61. 61.
    El-Roz M, Kus M, Cool P, Thibault-Starzyk F (2012) New operando IR technique to study the photocatalytic activity and selectivity of TiO2 nanotubes in air purification: Influence of temperature, UV intensity, and VOC concentration. J Phys Chem C 116:13252–13263CrossRefGoogle Scholar
  62. 62.
    Keturakis CJ, Zhu M, Gibson EK, Daturi M, Tao F, Frenkel AI, Wachs IE (2016) Dynamics of CrO3–Fe2O3 catalysts during the high-temperature water-gas shift reaction: molecular structures and reactivity. ACS Catal 6:4786–4798CrossRefGoogle Scholar
  63. 63.
    Mitchell MB (1993) Fundamentals and applications of diffuse reflectance infrared fourier transform (DRIFT) spectroscopy. In: Urban MW, Craver CD (eds) Structure-property relations in polymers, spectroscopy and performance. American Chemical Society, Washington, DC, pp 351–375CrossRefGoogle Scholar
  64. 64.
    Hamadeh IM, King D, Griffiths PR (1984) Heatable-evacuable cell and optical system for diffuse reflectance FT-IR spectrometry of adsorbed species. J Catal 88:264–272CrossRefGoogle Scholar
  65. 65.
    Weckhuysen BM (2009) Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew Chemie Int Ed 48:4910–4943CrossRefGoogle Scholar
  66. 66.
    Jodłowski PJ, Jędrzejczyk RJ, Chlebda D, Gierda M, Łojewska J (2017) In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface. J Catal 350:1–12CrossRefGoogle Scholar
  67. 67.
    Becker E, Carlsson P, Kylhammar L, Newton MA, Skoglundh M (2011) In situ spectroscopic investigation of low-temperature oxidation of methane over alumina-supported platinum during periodic operation. J Phys Chem C 115:944–951CrossRefGoogle Scholar
  68. 68.
    Rutkowska M, Díaz U, Palomares AE, Chmielarz L (2015) Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNOx process. Appl Catal B Environ 168–169:531–539CrossRefGoogle Scholar
  69. 69.
    Chlebda DK, Jodłowski PJ, Jędrzejczyk RJ, Łojewska J (2018) Generalised two-dimensional correlation analysis of the Co, Ce, and Pd mixed oxide catalytic systems for methane combustion using in situ infrared spectroscopy. Spectrochim Acta, Part A 192:202–210CrossRefGoogle Scholar
  70. 70.
    Chlebda DK, Jodłowski PJ, Jędrzejczyk RJ, Łojewska J (2017) 2D-COS of in situ μ-Raman and in situ IR spectra for structure evolution characterisation of NEP-deposited cobalt oxide catalyst during n-nonane combustion. Spectrochim Acta, Part A 186:44–51CrossRefGoogle Scholar
  71. 71.
    Marinkovic NS, Wang Q, Barrio L, Ehrlich SN, Khalid S, Cooper C, Frenkel AI (2011) Combined in situ X-ray absorption and diffuse reflectance infrared spectroscopy: An attractive tool for catalytic investigations. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 649:204–206CrossRefGoogle Scholar
  72. 72.
    Brieger C, Melke J, Van der Bosch N, Reinholz U, Riesemeier H, Guilherme Buzanich A, Kayarkatte MK, Derr I, Schökel A, Roth C (2016) A combined in-situ XAS-DRIFTS study unraveling adsorbate induced changes on the Pt nanoparticle structure. J Catal 339:57–67CrossRefGoogle Scholar
  73. 73.
    Parlett CMA, Gaskell CV, Naughton JN, Newton MA, Wilson K, Lee AF (2013) Operando synchronous DRIFTS/MS/XAS as a powerful tool for guiding the design of Pd catalysts for the selective oxidation of alcohols. Catal Today 205:76–85CrossRefGoogle Scholar
  74. 74.
    Jodłowski PJ, Chlebda D, Piwowarczyk E, Chrzan M, Jędrzejczyk RJ, Sitarz M, Węgrzynowicz A, Kołodziej A, Łojewska J (2016) In situ and operando spectroscopic studies of sonically aided catalysts for biogas exhaust abatement. J Mol Struct 1126:132–140CrossRefGoogle Scholar
  75. 75.
    Zaera F (2014) New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem Soc Rev 43:7624–7663CrossRefGoogle Scholar
  76. 76.
    Iwamoto M, Hoshino Y (1995) Time-resolved FT-IR study on isotopic exchange of ditrosyl species strongly adsorbed on Co-MFI zeolite. Chem Lett 24:729–730CrossRefGoogle Scholar
  77. 77.
    Yeom YH, Frei H (2003) Step-scan FT-IR monitoring of transient HCO radicals in a room temperature zeolite. J Phys Chem B 107:6286–6291CrossRefGoogle Scholar
  78. 78.
    Zhang M, De Respinis M, Frei H (2014) Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem 6:362–367CrossRefPubMedCentralGoogle Scholar
  79. 79.
    Chang BK, Jang BW, Dai S, Overbury SH (2005) Transient studies of the mechanisms of CO oxidation over Au/TiO2 using time-resolved FTIR spectroscopy and product analysis. J Catal 236:392–400CrossRefGoogle Scholar
  80. 80.
    Chen T, Feng Z, Wu G, Shi J, Ma G, Ying P, Li C (2007) Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ fourier transform IR and time-resolved IR spectroscopy. J Phys Chem C 111:8005–8014CrossRefGoogle Scholar
  81. 81.
    Yao S, Mudiyanselage K, Xu W, Johnston-Peck AC, Hanson JC, Wu T, Stacchiola D, Rodriguez JA, Zhao H, Beyer KA, Chapman KW, Chupas PJ, Martínez-Arias A, Si R, Bolin TB, Liu W, Senanayake SD (2014) Unraveling the dynamic nature of a CuO/CeO2 catalyst for CO oxidation in Operando: a combined study of XANES (fluorescence) and drifts. ACS Catal 4:1650–1661CrossRefGoogle Scholar
  82. 82.
    Kang M, Perry D, Kim YR, Colburn AW, Lazenby RA, Unwin PR (2015) Time-resolved detection and analysis of single nanoparticle electrocatalytic impacts. J Am Chem Soc 137:10902–10905CrossRefPubMedCentralGoogle Scholar
  83. 83.
    Thibault-Starzyk AF, Seguin E, Thomas S, Daturi M, Arnolds H, King DA (2016) Real-time of cyanide infrared detection flip on silver-alumina catalyst NOx removal. Science 324:1048–1051CrossRefGoogle Scholar
  84. 84.
    Johnson TJ, Simon A, Weil JM, Harris GW (1993) Applications of time-resolved step-scan and rapid-scan FT-IR spectroscopy: dynamics from ten seconds to ten nanoseconds. Appl Spectrosc 47:1376–1381CrossRefGoogle Scholar
  85. 85.
    Wille A, Fridell E (2007) Millisecond step-scan FT-IR transmission spectroscopy under transient reaction conditions: CO oxidation over Pt/Al2O3. Appl Catal B Environ 70:294–304CrossRefGoogle Scholar
  86. 86.
    Noda I, Ozaki Y (2004) Two-dimensional correlation spectroscopy—applications in vibrational and optical spectroscopy. Wiley, Chichester, UKCrossRefGoogle Scholar
  87. 87.
    Noda I, Dowrey AE, Marcott C (1988) 2D IR spectroscopy a new tool for interpreting infrared spectra. Mikrochim Acta 94:101–103CrossRefGoogle Scholar
  88. 88.
    Gołąbek K, Tarach KA, Góra-Marek K (2017) Standard and rapid scan infrared spectroscopic studies of o-xylene transformations in terms of pore arrangement of 10-ring zeolites—2D COS analysis. Dalt Trans 46:9934–9950CrossRefGoogle Scholar
  89. 89.
    Gołąbek K, Tarach KA, Góra-Marek K (2018) 2D COS analysis of m-xylene transformation over medium-pore zeolites. Microporous Mesoporous Mater 266:90–101CrossRefGoogle Scholar
  90. 90.
    Tarach KA, Gołąbek K, Choi M, Góra-Marek K (2017) Quantitative infrared spectroscopic studies and 2D COS analysis of xylenes isomerization over hierarchical zeolites. Catal Today 283:158–171CrossRefGoogle Scholar
  91. 91.
    Thibault-Starzyk F, Vimont A, Gilson J-P (2001) 2D-COS IR study of coking in xylene isomerisation on H-MFI zeolite. Catal Today 70:227–241CrossRefGoogle Scholar
  92. 92.
    Fernandez C, Stan I, Gilson JP, Thomas K, Vicente A, Bonilla A, Pérez-Ramírez J (2010) Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: role of mesoporosity and acid site speciation. Chem A Eur J 16:6224–6233CrossRefGoogle Scholar
  93. 93.
    Lewis IR, Edwards HGM, Dekker M (eds) (2001) Handbook of Raman spectroscopy. From the research laboratory to the process line. Taylor & Francis Group, LLC, New York and BaselGoogle Scholar
  94. 94.
    Bañares MA, Wachs IE (2010) Raman spectroscopy of catalysts. In: Encyclopedia of analytical chemistry. American Cancer SocietyGoogle Scholar
  95. 95.
    Horsley JA, Wachs IE, Brown JM, Via GH, Hardcastle FD (1987) Structure of surface tungsten oxide species in the tungsten trioxide/alumina supported oxide system from X-ray absorption near-edge spectroscopy and Raman spectroscopy. J Phys Chem 91:4014–4020CrossRefGoogle Scholar
  96. 96.
    Kim H, Kosuda KM, Van Duyne RP, Stair PC (2010) Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev 39:4820–4844CrossRefPubMedCentralGoogle Scholar
  97. 97.
    Bañares MA, Martinez-Huerta MV, Gao X, Fierro JLG, Wachs IE (2000) Dynamic behavior of supported vanadia catalysts in the selective oxidation of ethane. In situ Raman. UV-Vis and reactivity studies. Catal Today 61:295–301Google Scholar
  98. 98.
    Delgass WN (1979) Spectroscopy in heterogeneous catalysis. Academic PressGoogle Scholar
  99. 99.
    Lee EL, Wachs IE (2007) In situ spectroscopic investigation of the molecular and electronic structures of SiO2 supported surface metal oxides. J Phys Chem C 111:14410–14425CrossRefGoogle Scholar
  100. 100.
    Łojewska J, Knapik Kołodziej, Jodłowski P (2013) Far field combined AFM and micro-Raman imaging for characterisation of surface of structured catalysts: example of Pd doped CoOx catalysts on precalcined kanthal steel. Top Catal 56:1088–1095CrossRefGoogle Scholar
  101. 101.
    Pettinger B, Domke KF, Zhang D, Schuster R, Ertl G (2007) Direct monitoring of plasmon resonances in a tip-surface gap of varying width. Phys Rev B Condens Matter Mater Phys 76:1–4CrossRefGoogle Scholar
  102. 102.
    Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930CrossRefPubMedCentralGoogle Scholar
  103. 103.
    Yeo BS, Stadler J, Schmid T, Zenobi R (2009) Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem Phys Lett 472:1–13CrossRefGoogle Scholar
  104. 104.
    Chan KLA, Kazarian SG (2011) Tip-enhanced Raman mapping with top-illumination AFM. Nanotechnology 22:175701CrossRefPubMedCentralGoogle Scholar
  105. 105.
    Diskus M, Nilsen O, Fjellvåg H (2012) Combination of characterization techniques for atomic layer deposition MoO3 coatings: From the amorphous to the orthorhombic α-MoO3 crystalline phase. J Vac Sci Technol A Vacuum, Surf Film 30:01A107CrossRefGoogle Scholar
  106. 106.
    van Schrojenstein Lantman EM, Deckert-Gaudig T, Mank AJG, Deckert V, Weckhuysen BM (2012) Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat Nanotechnol 7:583–586CrossRefGoogle Scholar
  107. 107.
    Berweger S, Raschke MB (2010) Signal limitations in tip-enhanced Raman scattering: The challenge to become a routine analytical technique. Anal Bioanal Chem 396:115–123CrossRefPubMedCentralGoogle Scholar
  108. 108.
    Novotny L, Stranick SJ (2006) Near-field optical microscopy and spectroscopy with pointed probes. Annu Rev Phys Chem 57:303–331CrossRefPubMedCentralGoogle Scholar
  109. 109.
    Łojewska J, Knapik A, Jodłowski P, Łojewski T, Kołodziej A (2013) Topography and morphology of multicomponent catalytic materials based on Co, Ce and Pd oxides deposited on metallic structured carriers studied by AFM/Raman interlaced microscopes. Catal Today 216:11–17CrossRefGoogle Scholar
  110. 110.
    Harvey CE, van Schrojenstein Lantman EM, Mank AJG, Weckhuysen BM (2012) An integrated AFM-Raman instrument for studying heterogeneous catalytic systems: a first showcase. Chem Commun 48:1742–1744CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Chemical Engineering and TechnologyCracow University of TechnologyKrakówPoland
  2. 2.Faculty of ChemistryJagiellonian UniversityKrakówPoland

Personalised recommendations