Vibrational Spectroscopy of Zeolites

Theory Versus Experiment
  • Magdalena KrólEmail author
  • Andrzej Koleżyński
  • Andrzej Mikuła
  • Włodzimierz Mozgawa
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)


In this chapter, the ab initio calculations have been used to analyze the structural properties and vibrational spectra of selected zeolites. The spectra obtained as a result of theoretical calculations along with their interpretation were used to describe the experimental spectra of real zeolite structures. Presented results show that in the experimental spectra of zeolites one can distinguish the bands associated with characteristic vibrations of a bigger element of the structure, composed of tetrahedra, the primary building blocks. It was also shown that the composite envelopes of particular bands are significantly affected by component bands associated with characteristic vibrations of building units that form zeolite structures.



This work was partially supported by the National Science Centre, Poland, under grant No. 2015/17/B/ST8/01200.


  1. 1.
    Smith JV (1984) Definition of a zeolite. Zeolites 4:309–310CrossRefGoogle Scholar
  2. 2.
    Ciciszwili GW, Andronikaszwili TG, Kirov GN, Filizowa ŁD (1990) Zeolity naturalne. Wydawnictwo Naukowo-Techniczne, Warszawa (in Polish)Google Scholar
  3. 3.
    Xu R, Pang W, Yu J, Huo Q, Chen J (2009) Chemistry of zeolites and related porous materials: synthesis and structure. Wiley, New YorkGoogle Scholar
  4. 4.
    Auerbach SM, Carrado KA, Dutta PK (2003) Handbook of zeolite science and technology. Marcel Dekker, New YorkCrossRefGoogle Scholar
  5. 5.
    Gottardi G, Galli E (eds) (1985) Natural zeolites, mineral and rocks 18. Springer, BerlinGoogle Scholar
  6. 6.
    Förster H (1992) Infrared studies of zeolite complex. In: Davies JED (ed) Spectroscopic and computational systems. Kluwer Academic Publishers, AmsterdamGoogle Scholar
  7. 7.
    Klinowski J (1997) Solid-state NMR studies of molecular sieve catalysts. Chem Rev 91:1459–1479CrossRefGoogle Scholar
  8. 8.
    Breck DW (1974) Zeolite molecular sieves. Wiley, New YorkGoogle Scholar
  9. 9.
    Baerlocher C, McCusker L (2002) Database of zeolite structuresGoogle Scholar
  10. 10.
    Meier WM (1968) Molecular sieves. Society of Chemical Industry, LondonGoogle Scholar
  11. 11.
    Flaningen EM, Khatami H, Szymanski HA (1971) Infrared structural studies of zeolites frameworks. Adv Chem Ser 101:201–229CrossRefGoogle Scholar
  12. 12.
    de Man AJM, van Santen RA (1992) The relation between zeolite framework structure and vibrational spectra. Zeolites 12:269–279CrossRefGoogle Scholar
  13. 13.
    Bordiga S, Lamberti C, Bonino F, Travert A, Frédéric T-S, Thibault-Starzyk F (2015) Probing zeolites by vibrational spectroscopies. Chem Soc Rev 44:7262–7341CrossRefGoogle Scholar
  14. 14.
    Ermoshin VA, Smirnov KS, Bougerard D (1996) Molecular dynamics calculation of the vibrational spectra of OH groups in zeolites and on silica surfaces. Surf Sci 368:147–151CrossRefGoogle Scholar
  15. 15.
    Pechar F, Rykl D (1985) Infrared Spectra of Natural Zeolites. Rozpr. Ceskosl. Akad. Ved., PrahaGoogle Scholar
  16. 16.
    Uzunova EL, Niklov GS (2000) Vibrational modes of double four-member rings of oxygen-bridged silicon and aluminum atoms: a DFT study. J Phys Chem B 104:7299–7305CrossRefGoogle Scholar
  17. 17.
    Geidel E, Boehling H, Peuker Ch, Pliz W (1991) Approximate assignment of vibrational frequencies of the NaX framework. Stud Surf Sci Catal 65:511–519CrossRefGoogle Scholar
  18. 18.
    Geidel E, Lechert H, Döbler J, Jobic H, Calzaferri G, Bauer F (2003) Characterization of mesoporous materials by vibrational techniques. Microporous Mesoporous Mater 65:31–42CrossRefGoogle Scholar
  19. 19.
    Karge HG, Geidel E (2004) Vibrational spectroscopy. Vib Spectrosc 2:1–200Google Scholar
  20. 20.
    Sherwood PMA (1972) Vibrational spectroscopy of solids. Cambridge University Press, CambridgeGoogle Scholar
  21. 21.
    Adams DM, Newton DC (1970) Tables for factor group and point group analysis. Beckmann, CroydonGoogle Scholar
  22. 22.
    Bhagavantam S, Venkatarayudu T (1969) Theory of groups and its application to physical problem. Academic Press, New YorkGoogle Scholar
  23. 23.
    Ferraro JR, Ziomek JS (1975) Introduction group theory and its application to molecular structure. Plenum Press, New YorkCrossRefGoogle Scholar
  24. 24.
    Handke M, Mozgawa W (1993) Vibrational spectroscopy of the amorphous silicates. Vib Spectrosc 5:75–84CrossRefGoogle Scholar
  25. 25.
    Handke M, Mozgawa W (1995) Model quasi-molecule Si2O as an approach in the IR spectra description glassy and crystalline framework silicates. J Mol Struct 348:341–344CrossRefGoogle Scholar
  26. 26.
    Sefcik J, Goddard WA (2001) Thermochemistry of silicic acid deprotonation: comparison of gas-phase and solvated DFT calculations to experiment. Geochim Cosmochim Acta 65:4435–4443CrossRefGoogle Scholar
  27. 27.
    Tossell JA (2005) Theoretical study on the dimerization of Si(OH)4 in aqueous solution and its dependance on temperature and dielectric constant. Geochim Cosmochim Acta 69:283–291CrossRefGoogle Scholar
  28. 28.
    Kubicki DJ, Sykes D (1993) Molecular orbital calculations on H6Si2O7 with variable angle: Implications for high-presure vibrational spectra of silicate glasses. Am Min 78:253–255Google Scholar
  29. 29.
    Jastrzębski W (2006) Spektroskopia oscylacyjna pierścieni krzemotlenowych w strukturach krzemianów i siloksanów. AGH University of Sciecne and Technology, Kraków (in Polish)Google Scholar
  30. 30.
    Handke M (1984) Spektroskopia wibracyjna krzemianów a charakter wiązania Si–O w krzemianach (in polish). Zeszyty Naukowe AGH, Ceramika 48, KrakówGoogle Scholar
  31. 31.
    Mikuła A, Król M, Mozgawa W, Koleżyński A (2018) New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites. Spectrochim Acta A 195:62–67CrossRefGoogle Scholar
  32. 32.
    Handke M, Sitarz M, Mozgawa W (1998) Model of silicooxygen ring vibrations. J Mol Struct 450:229–238CrossRefGoogle Scholar
  33. 33.
    Marcolli C, Calzaferri G (1997) Vibrational structure of monosubstituted octahydrosilasesquioxanes. J Phys Chem B 101:4925–4933CrossRefGoogle Scholar
  34. 34.
    Bornhauser P, Calzaferri G (1996) Ring-opening vibrations of spherosiloxanes. J Phys Chem 100:2035–2044CrossRefGoogle Scholar
  35. 35.
    Pechar F, Rykl D (1983) Study of the vibrational spectra of natural natrolit. Can Mineral 21:689–695Google Scholar
  36. 36.
    Król M, Mozgawa W, Jastrzbski W, Barczyk K (2012) Application of IR spectra in the studies of zeolites from D4R and D6R structural groups. Microporous Mesoporous Mater 156:181–188CrossRefGoogle Scholar
  37. 37.
    Mozgawa W, Jastrzębski W, Handke M (2005) Vibrational spectra of D4R and D6R structural units. J Mol Struct 744–747:663–670CrossRefGoogle Scholar
  38. 38.
    Mozgawa W, Jastrzębski W, Handke M (2006) Cation-terminated structural clusters as a model for the interpretation of zeolite vibrational spectra. J Mol Struct 792–793:163–169CrossRefGoogle Scholar
  39. 39.
    Pápai I, Goursot A, Fajula F (1994) Density functional calculations on model clusters of zeolite-β. J Phys Chem 98:4654–4659CrossRefGoogle Scholar
  40. 40.
    Pidko E, Hensen EJM, Zhidomirov GM, van Santen R (2008) Nonlocalized charge compensation in zeolites: a periodic DFT study of cationic gallium-oxide clusters in mordenite. J Catal 255:139–143CrossRefGoogle Scholar
  41. 41.
    Hill JR, Sauer J (1995) Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 2. Aluminosilicates. J Phys Chem 99:9536–9550CrossRefGoogle Scholar
  42. 42.
    Ermoshin VA, Smirnov KS, Bougeard D (1996) Ab initio generalized valence force field for zeolite modelling 2. Aluminosilicates. Chem Phys 209:41–51CrossRefGoogle Scholar
  43. 43.
    Mozgawa W, Handke M, Jastrzębski W (2004) Vibrational spectra of aluminosilicate structural clusters. J Mol Struct 704:247–257CrossRefGoogle Scholar
  44. 44.
    Ermoshin VA, Smirnov KS, Bougeard D (1997) Ab initio force field for aluminosilicates; molecular dynamics simulation of the infrared spectra of zeolites. J Mol Struct 410–411:371–374Google Scholar
  45. 45.
    Hill JR, Sauer J (1997) Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica. J Phys Chem 98:1238–1244CrossRefGoogle Scholar
  46. 46.
    Mozgawa W (2007) Spektroskopia oscylacyjna zeolitów. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków (in Polish)Google Scholar
  47. 47.
    Mozgawa W, Król M, Barczyk K (2011) FT-IR studies of zeolites from different structural groups. Chemik 65(7):667–674Google Scholar
  48. 48.
    Mozgawa W, Bajda T (2006) Application of vibrational spectra in the studies of cation sorption on zeolites. J Mol Struct 792–793:170–175CrossRefGoogle Scholar
  49. 49.
    Huang Y, Jiang Z (1997) Vibrational spectra of completely siliceous zeolite A. Microporous Mater 12:341–345CrossRefGoogle Scholar
  50. 50.
    Loewenstein W (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Miner 39:92–96Google Scholar
  51. 51.
    Mozgawa W, Sitarz M (2002) Vibrational spectra of aluminosilicate ring structures. J Mol Struct 614:273–279CrossRefGoogle Scholar
  52. 52.
    Fernández-Jiménez A, Palomo A (2005) Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater 86:207–214CrossRefGoogle Scholar
  53. 53.
    Ma Y, Liu Z, Geng A, Vogt T, Lee Y (2016) Structural and spectroscopic studies of alkali-metal exchanged stilbites. Microporous Mesoporous Mater 224:339–348CrossRefGoogle Scholar
  54. 54.
    Yuan J, Yang J, Ma H, Liu C (2016) Crystal structural transformation and kinetics of NH4+/Na+ ion-exchange in analcime. Microporous Mesoporous Mater 222:202–208CrossRefGoogle Scholar
  55. 55.
    Mozgawa W, Bajda T (2005) Spectroscopic study of heavy metals sorption on clinoptilolite. Phys Chem Minerals 31:706–713CrossRefGoogle Scholar
  56. 56.
    Mozgawa W, Król M, Bajda T (2009) Application of IR spectra in the studies of heavy metal cations immobilization on natural sorbents. J Mol Struct 924–926:427–433CrossRefGoogle Scholar
  57. 57.
    Handke M, Jastrzębski W (2004) Vibrational spectroscopy of the ring structures in silicates and siloxanes. J Mol Struct 704:63–69CrossRefGoogle Scholar
  58. 58.
    Król M, Mozgawa W, Jastrzębski W (2016) Theoretical and experimental study of ion-exchange process on zeolites from 5–1 structural group. J Porous Mater 23:1–9CrossRefGoogle Scholar
  59. 59.
    Pedone A, Biczysko M, Barone V (2010) Environmental effects in computational spectroscopy: accuracy and interpretation. Chem Phys Chem 11:1812–1832PubMedPubMedCentralGoogle Scholar
  60. 60.
    Creighton JA, Deckman HW, Newsam JM (1994) Computer simulation and interpretation of the infrared and Raman spectra of sodalite frameworks. J Phys Chem 98:448–459CrossRefGoogle Scholar
  61. 61.
    Iyer KA, Singer SJ (1994) Local-mode analysis of complex zeolite vibrations: Sodalite. J Phys Chem 98:12670–12678CrossRefGoogle Scholar
  62. 62.
    Iyer KA, Singer SJ (1994) Local-mode analysis of complex zeolite vibrations: zeolite A. J Phys Chem 98:12679–12686CrossRefGoogle Scholar
  63. 63.
    Mikuła A, Król M, Koleżyński A (2015) Periodic model of an LTA framework. J Mol Model 21:275CrossRefPubMedCentralGoogle Scholar
  64. 64.
    Koleżyński A, Mikuła A, Król M (2016) Periodic model of LTA framework containing various non-tetrahedral cations. Spectrochim Acta A 157:17–25CrossRefGoogle Scholar
  65. 65.
    Blackwell CS (1979) Investigation of zeolite frameworks by vibrational properties. 2. The double-six-ring in group 4 zeolites. J Phys Chem 83:3257–3261CrossRefGoogle Scholar
  66. 66.
    Rodriguez A (1995) Vibrational spectroscopy and structural analysis of Na-Y zeolite. Vib Spectrosc 9:225–228CrossRefGoogle Scholar
  67. 67.
    Falabella Sousa-Aguiar E, Camorim VLD, Zotin FMZ, Correa dos Santos RL (1998) A Fourier transform infrared spectroscopy study of La-, Nd-, Sm-, Gd- and Dy-containing Y zeolites. Microporous Mesoporous Mater 25:25–34CrossRefGoogle Scholar
  68. 68.
    Król M, Mozgawa W, Barczyk K, Bajda T, Kozanecki M (2013) Changes in the vibrational spectra of zeolites due to sorption of heavy metal cations. J Appl Spectrosc 80(5):662–668CrossRefGoogle Scholar
  69. 69.
    Mikuła A, Król M, Koleżyński A (2015) The influence of the long-range order on the vibrational spectra of structures based on sodalite cage. Spectrochim Acta A 144:273–280CrossRefGoogle Scholar
  70. 70.
    Mikuła A, Król M, Koleżyński A (2016) Experimental and theoretical spectroscopic studies of Ag-, Cd- and Pb-sodalite. J Mol Struct 1126:110–116CrossRefGoogle Scholar
  71. 71.
    Schwartz M, Berry RJ (2001) Ab initio investigation of substituent effects on bond dissociation enthalpies in siloxanes and silanols. J Mol Struct 538:9–17CrossRefGoogle Scholar
  72. 72.
    Baker MD, Godber J, Ozin G (1985) Frequency and intensity considerations in the far-IR spectroscopy of faujasite xeolites: experiment and theory. Metal cation vibrational assignments, site locations, and populations. J Am Chem Soc 107:3033–3043CrossRefGoogle Scholar
  73. 73.
    Baker MD, Godber J, Helwig K, Ozin GA (1988) Probing extra-framework cations in alkali- and alkaline-earth-metal Linde type A zeolites by fourier transform far-infrared spectroscopy. J Phys Chem 92(21):6017–6024CrossRefGoogle Scholar
  74. 74.
    Mortier WJ (1992) Compilation of extra framework sites in zeolites. Butterworth & Co., Leuven, pp 41–48Google Scholar
  75. 75.
    Günther C, Richter H, Voigt I, Michaelis A, Tzscheutschler H, Krause-Rehberg R, Serra JM (2015) Synthesis and characterization of a sulfur containing hydroxy sodalite without sulfur radicals. Microporous Mesoporous Mater 214:1–7CrossRefGoogle Scholar
  76. 76.
    Bonaccorsi E, Orlandi P (2003) Marinellite, a new feldspathoid of the cancrinite-sodalite group. Eur J Mineral 15:1019–1027CrossRefGoogle Scholar
  77. 77.
    Hackbarth K, Gesing TM, Fechtelkord M, Stief F, Buhl J (1999) Synthesis and crystal structure of carbonate cancrinite Na8[AlSiO4]6CO3(H2O)3.4, grown under low-temperature hydrothermal conditions. Microporous Mesoporous Mater 30:347–358CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Magdalena Król
    • 1
    Email author
  • Andrzej Koleżyński
    • 1
  • Andrzej Mikuła
    • 1
  • Włodzimierz Mozgawa
    • 1
  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations