Computational Methods in Spectroscopy

  • Andrzej KoleżyńskiEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 26)


Spectroscopy investigates the interaction of electromagnetic radiation with matter. Along with the development of theoretical methods, increasingly effective numerical algorithms and computational methods as well as computer technologies and resulting growing computer power available for scientists, the so-called in silico experiments—computer simulations of materials and their properties in computer—have become an irreplaceable tool supporting experimental research, often allowing a better understanding of phenomena taking place during these interactions, and associated material properties. As a result, it becomes possible in growing number of cases to effectively design new materials with desired properties and to modify existing ones, to improve their properties. This chapter is devoted to a brief introduction to issues related to theoretical foundations of quantum mechanics and density functional theory, both in stationary and time-dependent form. The key assumptions of these theories are presented, together with the description of various approximations and simplifications necessary for their practical application to the calculation of properties examined by spectroscopic methods. The most important practical problems encountered during calculations, resulting from the complexity of real materials and typical ways of dealing with these problems by means of various simplifications, idealizations, and abstractions in designed structural models corresponding to real materials, are also presented.


  1. 1.
    Lambert JB, Mazzola EP (2018) Nuclear magnetic resonance spectroscopy: an introduction to principles, applications, and experimental methods, 2nd edn. WileyGoogle Scholar
  2. 2.
    Chan JCC (ed) (2012) Solid state NMR. Topics in current chemistry, vol 316. Springer-Verlag, BerlinGoogle Scholar
  3. 3.
    Buhl M, van Mourik T (2011) NMR spectroscopy: quantumchemical calculations. WIREs Comput Mol Sci 1:634–647CrossRefGoogle Scholar
  4. 4.
    Shukla AK (ed) (2017) EMR/ESR/EPR spectroscopy for characterization of nanomaterials. Advanced structured materials, vol 62. Springer, IndiaGoogle Scholar
  5. 5.
    van Doorslaer S, Murphy DM (2012) EPR spectroscopy: applications in chemistry and biology. Topics in current chemistry, vol 321. Springer, BerlinGoogle Scholar
  6. 6.
    Diem M (2015) Modern vibrational spectroscopy and micro-spectroscopy: theory, instrumentation, and biomedical applications. Wiley, ChichesterCrossRefGoogle Scholar
  7. 7.
    Perkampus HH (1992) UV-Vis spectroscopy and its applications. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Kumar C (ed) (2013) UV-Vis and photoluminescence spectroscopy for nanomaterials characterization. Springer, BerlinGoogle Scholar
  9. 9.
    Hollas JM (2004) Modern spectroscopy, 4th edn. Wiley, Chichester, EnglandGoogle Scholar
  10. 10.
    Kuzmany H (2009) Solid-state spectroscopy. An introduction, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  11. 11.
    Briggs D, Seah MP (1990) Auger and X-ray photoelectron. Practical surface analysis spectroscopy, vol 1. Wiley, ChichesterGoogle Scholar
  12. 12.
    Eland JHD (1984) Photoelectron spectroscopy. An introduction to ultraviolet photoelectron spectroscopy in the gas phase. Butterworth-Heinemann, OxfordGoogle Scholar
  13. 13.
    Siegbahn K (1973) Electron spectroscopy for chemical analysis. In: Smith SJ, Walters GK (eds) Atomic physics, vol 3. Springer, Boston, MAGoogle Scholar
  14. 14.
    Wolstenholme J (2015) Auger electron spectroscopy: practical application to materials analysis and characterization of surfaces, interfaces, and thin films. Momentum PressGoogle Scholar
  15. 15.
    Sharma VK, Klingelhofer G, Nishida T (eds) (2013) Mossbauer spectroscopy: applications in chemistry, biology, industry, and nanotechnology. WileyGoogle Scholar
  16. 16.
    Gütlich P, Bill E, Trautwein AX (2011) Mossbauer spectroscopy and transition metal chemistry: fundamentals and applications. Springer, HeidelbergCrossRefGoogle Scholar
  17. 17.
    Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  18. 18.
    Gatti F (2014) Molecular quantum dynamics: from theory to applications. Springer, BerlinCrossRefGoogle Scholar
  19. 19.
    Nightingale MP, Umrigar CJ (eds) (1998) Quantum Monte Carlo methods in physics and chemistry. Kluwer Academic Publishers, DordrechtGoogle Scholar
  20. 20.
    Mitas L, Roy PN, Tanaka S (eds) (2016) Recent progress in quantum Monte Carlo. In: ACS symposium series, American Chemical Society, Washington, DC, USAGoogle Scholar
  21. 21.
    Anderson JB (2007) Quantum Monte-Carlo: origins, development, applications. Oxford University Press, USAGoogle Scholar
  22. 22.
    Schrödinger E (1926) Quantisierung als eigenwertproblem. Erste mittteilung. Ann D Physik 79:361–376CrossRefGoogle Scholar
  23. 23.
    Schrödinger E (1926) Quantisierung als eigenwertproblem. Zweite mittteilung. Ann D Physik 79:489–527CrossRefGoogle Scholar
  24. 24.
    Schrödinger E (1926) Quantisierung als eigenwertproblem. Dritte mittteilung. Ann D Physik 80:437–490CrossRefGoogle Scholar
  25. 25.
    Schrödinger E (1926) Quantisierung als eigenwertproblem, Vierte mittteilung. Ann D Physik 81:109–139CrossRefGoogle Scholar
  26. 26.
    Schrödinger E (1926) Der stetige übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14:664–666CrossRefGoogle Scholar
  27. 27.
    Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070CrossRefGoogle Scholar
  28. 28.
    Hartree DR (1928) The wave mechanics of an atom with a non-Coulomb central field. Math Proc Cambridge Phil Soc 24:89–110CrossRefGoogle Scholar
  29. 29.
    Nemoškalenko VV, Antonov NV (1999) Computational methods in solid state physics. CRC PressGoogle Scholar
  30. 30.
    Löwdin PO (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97:1474–1489CrossRefGoogle Scholar
  31. 31.
    Löwdin PO (1959) Correlation problem in many-electron quantum mechanics I. Review of different approaches and discussion of some current ideas. Adv Chem Phys 2:207Google Scholar
  32. 32.
    Sherrill CD, Schaefer HF III (1999) The configuration interaction method: advances in highly correlated approaches. In: Löwdin PO (ed) Advances in quantum chemistry, vol 34. Academic Press, San Diego, pp 143–269Google Scholar
  33. 33.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  34. 34.
    Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Letters 153:503–506CrossRefGoogle Scholar
  35. 35.
    Pople JA, Seeger R, Krishnan R (1977) Variational configuration interaction methods and comparison with perturbation theory. Int J Quantum Chem 12:149–163CrossRefGoogle Scholar
  36. 36.
    Pople JA, Binkley JS, Seeger R (1976) Theoretical models incorporating electron correlation. Int J Quantum Chem 10:1–19CrossRefGoogle Scholar
  37. 37.
    Raghavachari K, Pople JA (1978) Approximate fourth-order perturbation theory of the electron correlation energy. Int J Quantum Chem 14:91–100CrossRefGoogle Scholar
  38. 38.
    Purvis GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76:1910–1919CrossRefGoogle Scholar
  39. 39.
    van Voorhis T, Head-Gordon M (2001) Two-body coupled cluster expansions. J Chem Phys 115:5033–5041CrossRefGoogle Scholar
  40. 40.
    Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–35975CrossRefGoogle Scholar
  41. 41.
    Roos BO, Taylor PR, Siegbahn PEM (1980) A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys 48:157–173CrossRefGoogle Scholar
  42. 42.
    Olsen J (2011) The CASSCF method: a perspective and commentary. Int J Quantum Chem 111:3267–3272CrossRefGoogle Scholar
  43. 43.
    Buenker RJ, Peyerimhoff SD (1975) Energy extrapolation in CI calculations. Theor Chim Acta 39:217–228CrossRefGoogle Scholar
  44. 44.
    Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies. J Chem Phys 90:5622–5629CrossRefGoogle Scholar
  45. 45.
    Curtiss LA, Jones C, Trucks GW, Raghavachari K, Pople JA (1990) Gaussian-1 theory of molecular energies for second-row compounds. J Chem Phys 4:2537–2545CrossRefGoogle Scholar
  46. 46.
    Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94:7221–7230CrossRefGoogle Scholar
  47. 47.
    Curtiss LA, Rachavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 18:7764–7776CrossRefGoogle Scholar
  48. 48.
    Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126:084108PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Feller D, Peterson KA, Dixon DA (2008) A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures. J Chem Phys 129:204105PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Peterson KA, Feller D, Dixon DA (2012) Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges. Theor Chem Acc 131: 1079–5Google Scholar
  51. 51.
    Deyonker NJ, Cundari TR, Wilson AK (2006) The correlation consistent composite approach (ccCA): an alternative to the Gaussian-n methods. J Chem Phys 124(11):114104PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Petersson G (2002) Complete basis set models for chemical reactivity: from the helium atom to enzyme kinetics. In: Cioslowski J (ed) Quantum-mechanical prediction of thermochemical data, vol 22. Springer, Netherlands, pp 99–130CrossRefGoogle Scholar
  53. 53.
    Thomas LH (1927) The calculation of atomic fields. Proc Camb Phil Soc 23:542–548CrossRefGoogle Scholar
  54. 54.
    Fermi E (1928) Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Phys 48:73–79CrossRefGoogle Scholar
  55. 55.
    Dirac PAM (1930) Note on exchange phenomena in the thomas atom. Proc Camb Phil Soc 26:376–385CrossRefGoogle Scholar
  56. 56.
    Weizsäcker CF (1935) Zur theorie der Kernmassen. Z Phys 96:431–458CrossRefGoogle Scholar
  57. 57.
    Teller E (1962) On the stability of molecules in Thomas-Fermi theory. Rev Mod Phys 34:627–631CrossRefGoogle Scholar
  58. 58.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871CrossRefGoogle Scholar
  59. 59.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138CrossRefGoogle Scholar
  60. 60.
    Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569CrossRefGoogle Scholar
  61. 61.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079CrossRefGoogle Scholar
  62. 62.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  63. 63.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868PubMedCrossRefGoogle Scholar
  64. 64.
    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211CrossRefGoogle Scholar
  65. 65.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  66. 66.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406–136409PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  68. 68.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  69. 69.
    Wu Z, Cohen RE (2006) More accurate gradient approximation for solids. Phys Rev B 73:235116–235121CrossRefGoogle Scholar
  70. 70.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401–146404PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  72. 72.
    Swart M, Solà M, Bickelhaupt FM (2009) A new all-round DFT functional based on spin states and SN2 barriers. J Chem Phys 131:094103PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Sun J, Perdew JP, Ruzsinszky A (2015) Semilocal density functional obeying a strongly tightened bound for exchange. Proc Nat Acad Sci 112:685–689PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Peverati R, Truhlar DG (2014) Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil Trans R Soc A 372:20120476PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  76. 76.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  77. 77.
    Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985CrossRefGoogle Scholar
  78. 78.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  79. 79.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215CrossRefGoogle Scholar
  80. 80.
    Gunnarsson O, Jonson M, Lundqvist BI (1976) Exchange and correlation in atoms, molecules and solids. Phys Lett A 59:177–179CrossRefGoogle Scholar
  81. 81.
    Alonso JA, Girifalco LA (1978) Nonlocal approximation to the exchange potential and kinetic energy of an inhomogeneous electron gas. Phys Rev B 17:3735–3743CrossRefGoogle Scholar
  82. 82.
    Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943–954CrossRefGoogle Scholar
  83. 83.
    Koleżyński A, Król M, Żychowicz M (2018) The structure of geopolymers—theoretical studies. J Mol Struct 1163:465–471CrossRefGoogle Scholar
  84. 84.
    Groenhof G (2013) Introduction to QM/MM simulations. In: Monticelli L, Salonen E (eds) Biomolecular simulations: methods and protocols, methods in molecular biology, vol 924. Springer Science+Business Media, New YorkGoogle Scholar
  85. 85.
    Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA (2018) Spectroscopy in complex environments from QM–MM simulations. Chem Rev 118:4071–4113PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Koleżyński A, Mikuła A, Król M (2016) Periodic model of LTA framework containing various non-tetrahedral cations. Spectrochim Acta A 157:17–25CrossRefGoogle Scholar
  87. 87.
    Thomas M, Brehm M, Fligg R, Vöhringer P, Kirchner B (2013) Computing vibrational spectra from ab initio molecular dynamics. Phys Chem Chem Phys 15:6608–6622PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    DickinsonJA Hockridge MR, Kroemer RT, Robertson EG, Simons JP, McCombie J, Walker M (1998) Conformational choice, hydrogen bonding, and rotation of the S1 ← S0 electronic transition moment in 2-Phenylethyl Alcohol, 2-Phenylethylamine, and their water clusters. J Am Chem Soc 120:2622–2632CrossRefGoogle Scholar
  89. 89.
    Kubelka J, Keiderling TA (2001) Differentiation of β-sheet-forming structures: Ab initio-based simulations of IR absorption and vibrational CD for model peptide and protein β-sheets. J Am Chem Soc 123:12048–12058PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations: the theory of infrared and Raman vibrational spectra. McGraw-Hill co., New York, USAGoogle Scholar
  91. 91.
    Nafie LA, Polavarapu PL (1981) Localized molecular orbital calculations of vibrational circular dichroism. I. General theoretical formalism and CNDO results for the carbon-deuterium stretching vibration in neopentyl-1-d-chloride. J Chem Phys 75:2935–2944CrossRefGoogle Scholar
  92. 92.
    Nafie LA, Freedman TB (1981) A unified approach to the determination of infrared and Raman vibrational optical activity intensities using localized molecular orbitals. J Chem Phys 75:4847–4851CrossRefGoogle Scholar
  93. 93.
    Kormornicki A, McIver JW Jr (1979) An efficient ab initio method for computing infrared and Raman intensities: application to ethylene. J Chem Phys 70:2014–2016CrossRefGoogle Scholar
  94. 94.
    King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47: 1651–1564CrossRefGoogle Scholar
  95. 95.
    Resta R (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys 66:899–915CrossRefGoogle Scholar
  96. 96.
    Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56:12847–12865CrossRefGoogle Scholar
  97. 97.
    Silvestrelli PL, Parrinello M (1999) Water molecule dipole in the gas and in the liquid phase. Phys Rev Lett 82:3308–3311CrossRefGoogle Scholar
  98. 98.
    Maschio L, Kirtman B, Orlando R, Rèrat M (2012) Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method. J Chem Phys 137:204113PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. J Chem Phys 139:164101PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. J Chem Phys 139:164102PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Grimme S (2004) Calculation of the electronic spectra of large molecules. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry. WileyGoogle Scholar
  102. 102.
    Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037CrossRefGoogle Scholar
  103. 103.
    Olivucci M, Sinicropi A (2005) Computational photochemistry. In: Olivucci M (ed) Computational photochemistry, vol 16. Elsevier, AmsterdamGoogle Scholar
  104. 104.
    Gagliardia L, Roos BO (2007) Multiconfigurational quantum chemical methods for molecular systems containing actinides. Chem Soc Rev 36:893–903CrossRefGoogle Scholar
  105. 105.
    Burke K, Werschnik J, Gross EK (2005) Time-dependent density functional theory: past, present, and future. J Chem Phys 123:62206PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42:845–856PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287–323PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113:2019–2039CrossRefGoogle Scholar
  109. 109.
    Marques MAL, Nogueira FMS, Gross EKU, Rubio A (eds) (2012) Fundamentals of time-dependent density functional theory, vol 837. Springer-Verlag, HeidelbergGoogle Scholar
  110. 110.
    Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin–bacteriochlorin and bacteriochlorophyll–spheroidene complexes. J Am Chem Soc 126:4007–4016PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000CrossRefGoogle Scholar
  112. 112.
    Langhoff PW, Epstein ST, Karplus M (1972) Aspects of time-dependent perturbation theory. Rev Mod Phys 44:602–644CrossRefGoogle Scholar
  113. 113.
    Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464CrossRefGoogle Scholar
  114. 114.
    Gross EKU, Dobson JF, Petersilka M (1996) Density functional theory of time-dependent phenomena. Topics in chemistry. In: Nalewajski RF (ed) Density functional theory. Topics in current chemistry, vol 181. Springer-Verlag, BerlinGoogle Scholar
  115. 115.
    Improta R (2012) UV-visible absorption and emission energies in condensed phase by PCM/TD-DFT methods. In: Barone V (ed) Computational strategies for spectroscopy: from small molecules to nano systems. Wiley, Hoboken, New JerseyGoogle Scholar
  116. 116.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224CrossRefGoogle Scholar
  117. 117.
    Mennucci B, Cammi R (eds) (2008) Continuum solvation models in chemical physics: from theory to applications. Wiley, Chichester, EnglandGoogle Scholar
  118. 118.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002) Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102–6113CrossRefGoogle Scholar
  120. 120.
    Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc, Perkin Trans 2:799–805CrossRefGoogle Scholar
  121. 121.
    Klamt A (2005) From quantum chemistry to fluid phase thermodynamics and drug design. Elsevier, Boston, USAGoogle Scholar
  122. 122.
    Skyner RE, McDonagh JL, Groom CR, van Mourik T, Mitchell JBO (2015) A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys Chem Chem Phys 17:6174–6191PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Kamerlin SCL, Haranczyk M, Warshel A (2009) Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models. Chem Phys Chem 10:1125–1134PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Fletcher RE, Ling S, Slater B (2017) Violations of Lowenstein{‘}s rule in zeolites. Chem Sci 8:7483–7491PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Ikeda T, Izumi F, Kodaira T, Kamiyama T (1998) Structural study of sodium-type zeolite LTA by combination of Rietveld and maximum-entropy methods. J Chem Mat 10:3996–4004CrossRefGoogle Scholar
  126. 126.
    Pluth JJ, Smith JV (1980) Accurate redetermination of crystal structure of dehydrated zeolite A. Absence of near zero coordination of sodium. Refinement of silicon, aluminum-ordered superstructure. Am Chem Soc 102:4704–4708CrossRefGoogle Scholar
  127. 127.
    Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61:7877–7882CrossRefGoogle Scholar
  128. 128.
    Íñiguez J, Vanderbilt D, Bellaiche L (2003) First-principles study of (BiScO3)1-x–(PbTiO3)x piezoelectric alloys. Phys Rev B 67:224107CrossRefGoogle Scholar
  129. 129.
    Winkler B, Pickard C, Milman V (2002) Applicability of a quantum mechanical “virtual crystal approximation” to study Al/Si-disorder. Chem Phys Lett 362:266–270CrossRefGoogle Scholar
  130. 130.
    Soven P (1966) Coherent-potential model of substitutional disordered alloys. Phys Rev 156:809–813CrossRefGoogle Scholar
  131. 131.
    Velický B, Kirkpatrick S, Ehrenreich H (1968) Single-site approximations in the electronic theory of simple binary alloys. Phys Rev 175:747–766CrossRefGoogle Scholar
  132. 132.
    Velický B (1969) Theory of electronic transport in disordered binary alloys: coherent-potential approximation. Phys Rev 184:614–627CrossRefGoogle Scholar
  133. 133.
    Drożdż E, Koleżyński A (2017) The structure, electrical properties and chemical stability of porous Nb-doped SrTiO3—experimental and theoretical studies. RSC Adv 7:28898–28908CrossRefGoogle Scholar
  134. 134.
    Mikuła A, Drożdż E, Koleżyński A (2018) Electronic structure and structural properties of Cr-doped SrTiO3. Theoretical investigation. J Alloys Compd 749:931–938CrossRefGoogle Scholar
  135. 135.
    Kupwade-Patil K, Soto F, Kunjumon A, Allouche E, Mainardi D (2013) Multi-scale modeling and experimental investigations of geopolymeric gels at elevated temperatures. Comp Struct 122:164–177CrossRefGoogle Scholar
  136. 136.
    Kroll P (2003) Modelling and simulation of amorphous silicon oxycarbide. J Mater Chem 13:1657–1668CrossRefGoogle Scholar
  137. 137.
    Tian KV, Mahmoud MZ, Cozza P, Licoccia S, Fang D, Di Tommaso D, Chass GA, Greaves N (2016) Periodic vs. molecular cluster approaches to resolving glass structure and properties: anorthite a case study. J Non-Cryst Solids 451:138–145CrossRefGoogle Scholar
  138. 138.
    White CE, Provis JL, Proffen T, Riley DP, van Deventer JS (2010) Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys Chem Chem Phys 12:3239–3245PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, D L, Morokuma K (2015) The ONIOM method and its applications. Chem Rev 115:5678–5796PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Asthagiri A, Janik MJ (eds) (2013) Computational catalysis: RSC (Catalysis series). Roy Soc Chem, UKGoogle Scholar
  141. 141.
    van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis: a conceptual and computational approach. Wiley-VCH Verlag GmbH & Co., Weinheim, GermanyCrossRefGoogle Scholar
  142. 142.
    van Santen RA, Sautet P (eds) (2009) Computational methods in catalysis and materials science: an introduction for scientists and engineers. Wiley-VCH Verlag GmbH & Co., Weinheim, GermanyGoogle Scholar
  143. 143.
    Thiel W (2014) Computational catalysis—past, present, and future. Angew Chem Int Ed 53:8605–8613CrossRefGoogle Scholar
  144. 144.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations