Electronically Controllable Current-Mode Instrumentation Amplifiers

  • Leila Safari
  • Giuseppe Ferri
  • Shahram Minaei
  • Vincenzo Stornelli
Part of the Analog Circuits and Signal Processing book series (ACSP)


In this chapter, Current-Mode Instrumentation Amplifiers (CMIAs) with the capability of having an electronically controllable gain are discussed. These CMIAs do not require variable passive resistors to change gain but the latter is adjusted by means of a control voltage or current. This kind of instrumentation amplifiers is more suitable for IC realization. We divide electronically controllable CMIAs into two categories. In the first category, gain is varied by means of either bias current or bias voltage of the used active building blocks. Here, electronic controllability is achieved at the expense of higher power consumption. In the second category, gain is varied by means of an electronically variable active resistor. Therefore, they have much simpler design and show less power consumption.


  1. 1.
    Jaikla W., Siripruchyanan M. (2006) Dual-outputs current controlled differential voltage current conveyor and its applications.International Symposium on Communications and Information Technologies, 2006.Google Scholar
  2. 2.
    Siripruchyanun M., Jaikla W. (2008) Current controlled current conveyor trans-conductance amplifier (CCCCTA): A building block for analog signal processing. Electronics Engineering, 90: 443–453.CrossRefGoogle Scholar
  3. 3.
    Chanapromma C., Tanaphatsiri C., Siripruchyanun M. (2009) An electronically controllable instrumentation amplifier based on CCCCTAs. International Symposium on Intelligent Signal Processing and Communications Systems, 2009.Google Scholar
  4. 4.
    Siripruchyanun M., Payakkakul K. (2017) A temperature-insensitive instrumentation amplifier using CCTA-based voltage to current converter. International Electrical Engineering Congress (iEECON), 2017.Google Scholar
  5. 5.
    Fabre A., Saaid O., Wiest F., Boucheron C. (1996) High frequency applications based on a new current controlled conveyor. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(2):81–92.CrossRefGoogle Scholar
  6. 6.
    Maheshwari S. (2002) High CMRR wide bandwidth instrumentation amplifier using current controlled conveyors.International Journal of Electronics, 89(12):889–896.CrossRefGoogle Scholar
  7. 7.
    H. Ercan, S. A. Tekin, M. Alci, “Voltage- and Current-Controlled High CMRR Instrumentation Amplifier Using CMOS Current Conveyors,” Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 20, No. 4, pp. 547–556, 2012.Google Scholar
  8. 8.
    Harzi Z. M., Alami M. (2015) A novel high bandwidth current mode instrumentation amplifier. International Conference on Microelectronics (ICM), 2015.Google Scholar
  9. 9.
    Abuelmaatti M. T., Al-Qahtani M. A. (1998) A new current-controlled multiphase sinusoidal oscillator using translinear current conveyors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45(7):881–885.CrossRefGoogle Scholar
  10. 10.
    Safari L., Minaei S. (2013) A novel resistor-free electronically adjustable current-mode instrumentation amplifier. Circuits Systems and Signal Processing, 32:1025–1038.CrossRefGoogle Scholar
  11. 11.
    Safari L., Minaei S. (2017) New ECCII-Based electronically controllable current-mode instrumentation Amplifier with High Frequency Performance. European Conference on Circuit Theory and Design (ECCTD), 2017.Google Scholar
  12. 12.
    Agrawal D., Maheshwari S. (2018) Cascadable current mode instrumentation amplifier. AEÜ - International Journal of Electronics and Communications, 92:91–101, 2018.CrossRefGoogle Scholar
  13. 13.
    Ayten U., Cem Dikbaş M. (2018) Current and tansimpedance mode instrumentation amplifier using a single new active component named CDTRA.AEÜ - International Journal of Electronics and Communications, 91:24–36, 2018.CrossRefGoogle Scholar
  14. 14.
    Chaturvedi B., Kumar A. (2018) Electronically tunable current-mode instrumentation amplifier with high CMRR and Wide bandwidth. AEU-International Journal of Electronics and Communications, 116–123.CrossRefGoogle Scholar
  15. 15.
    Safari L., Minaei S. (2017) A novel COA-based electronically adjustable current-mode instrumentation amplifier topology. AEU-International Journal of Electronics and Communications, 82:285–293, 2017.CrossRefGoogle Scholar
  16. 16.
    Safari L., Yuce E., Minaei S. (2016) A new transresistance-mode instrumentation amplifier with low number of MOS transistors and electronic tuning opportunity. Journal of Circuits, Systems, and Computers 25(4), 2016.CrossRefGoogle Scholar
  17. 17.
    Oruganti S., Pandey N., Pandey R. (2018) Electronically tunable high gain current-mode instrumentation amplifier” AEÜ - International Journal of Electronics and Communications, in press, 2018.Google Scholar
  18. 18.
    Pandey R., Pandey N., Paul S. K. (2013) Electronically tunable transimpedance instrumentation amplifier based on OTRA.Journal of Engineering, 10:1–5.Google Scholar
  19. 19.
    Salama K. N., Soliman A. M. (1999) CMOS operational transresistance amplifier for analog signal processing. Microelectronics Journal, 30(3):235–245.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leila Safari
    • 1
  • Giuseppe Ferri
    • 2
  • Shahram Minaei
    • 3
  • Vincenzo Stornelli
    • 2
  1. 1.TehranIran
  2. 2.University of L’AquilaL’aquilaItaly
  3. 3.Doğuş UniversityIstanbulTurkey

Personalised recommendations