Function and Molecular Design of the Synapse

  • Anna L. ProskuraEmail author
  • Tatyana A. Zapara
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 799)


The majority of excitatory synapses in the mammalian forebrain and the hippocampus terminate onto dendritic spines. Even though their intricate molecular composition remains obscure in many aspects, available evidence suggests that these structures are highly specialized to support the short- and long-term plasticity crucial for flexible information processing. One concept that is extensively used to describe synaptic function is the Hebb’s postulate. However, the knowledge accumulated throughout following decades advocate for a broader scale in intercellular connection functions. Synaptic activity depends on interactions among sets of proteins (synaptic interactome) that assemble into complex supramolecular machines. Molecular biology, electrophysiology, and live-cell imaging studies have provided tantalizing glimpses into the inner workings of the synapse, yet fundamental questions regarding the functional organization of these “molecular nanomachines” remain to be answered. The presence of accessory receptors for secondary messengers in synapses along with receptors for primary mediator gave us the idea that these molecular constructs could be responsible for initial processing of the incoming signals. The purpose of this initial processing could be determined by analyzing and reconstructing this molecular informational machine that is essentially dendritic spine of hippocampal pyramidal neurons.


Pyramidal synapse Dendritic spine Interactome AMPA receptors 


  1. 1.
    Turgut, Y.B., Turgut, M.: A mysterious term hippocampus involved in learning and memory. Childs Nerv. Syst. 27(12), 2023–2025 (2011). Scholar
  2. 2.
    Proskura, A.L., Ratushnyak, A.S., Vechkapova, S.O., Zapara, T.A.: Synapse as a multi-component and multi-level information system. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V. (eds.) Advances in Neural Computation, Machine Learning, and Cognitive Research, NEUROINFORMATICS 2017. Studies in Computational Intelligence, vol. 736, pp. 186–192. Springer, Cham (2018)Google Scholar
  3. 3.
    Proskura, A.L., Vechkapova, S.O., Zapara, T.A., Ratushnyak, A.S.: Reconstruction of the molecular interactome of glutamatergic synapses. Russ. J. Genet. Appl. Res. 5(6), 616–625 (2015)CrossRefGoogle Scholar
  4. 4.
    Harvey, J.: Leptin regulation of neuronal morphology and hippocampal synaptic function. Front. Synaptic Neurosci. 5(3), 1–7 (2013). Scholar
  5. 5.
    Li, S., Cullen, W.K., Anwyl, R., Rowan, M.J.: Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat. Neurosci. 6(5), 526–531 (2003). Scholar
  6. 6.
    Pastalkova, E., Serrano, P., Pinkhasova, D., Wallace, E., Fenton, A.A., Sacktor, T.C.: Storage of spatial information by the maintenance mechanism of LTP. Science 313(5790), 1141–1144 (2006). Scholar
  7. 7.
    Ananko, E.A., Podkolodny, N.L., Stepanenko, I.L., Podkolodnaya, O.A., Rasskazov, D.A., Miginsky, D.S., Likhoshvai, V.A., Ratushny, A.V., Podkolodnaya, N.N., Kolchanov, N.A.: GeneNet in 2005. Nucl. Acids Res. 33, 425–427 (2005). Scholar
  8. 8.
    Proskura, A.L., Malakhin, I.A., Zapara, T.A., Turnaev, I.I., Suslov, V.V., Ratushnyak, A.S.: Intermolecular interactions in neuronal functional systems. Russ. J. Genet. Appl. Res. 17, 620–628 (2013)Google Scholar
  9. 9.
    Proskura, A.L., Ratushnyak, A.S., Zapara, T.A.: The protein-protein interaction networks of dendritic spines in the early phase of long-term potentiation. J. Comput. Sci. Syst. Biol. 7, 40–44 (2014). Scholar
  10. 10.
    Raghuram, V., Sharma, Y., Kreutz, M.R.: Ca2+ sensor proteins in dendritic spines: a race for Ca2+. Front. Mol. Neurosci. 5, 61 (2012). Scholar
  11. 11.
    Newpher, T.M., Ehlers, M.D.: Glutamate receptor dynamics in dendritic microdomains. Neuron 58(4), 472–497 (2008). Scholar
  12. 12.
    Petrini, E.M., Lu, J., Cognet, L., Lounis, B., Ehlers, M.D., Choquet, D.: Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron 63(1), 92–105 (2009). Scholar
  13. 13.
    Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F., Huganir, R.L.: Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405(6789), 955–959 (2000). Scholar
  14. 14.
    Kim, M., Park, A.J., Havekes, R., Chay, A., Guercio, L.A., Oliveira, R.F., Abel, T., Blackwell, K.T.: Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation. PLoS Comput. Biol. 7(6), e1002084 (2011). Scholar
  15. 15.
    He, K., Song, L., Cummings, L.W., Goldman, J., Huganir, R.L., Lee, H.K.: Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation. Proc. Natl. Acad. Sci. USA 106(47), 20033–20038 (2009). Scholar
  16. 16.
    Zapara, T.A., Proskura, A.L., Malakhin, I.A., Vechkapova, S.O., Ratushnyak, A.S.: The mobility of AMPA-type glutamate receptors as a key factor in the expression and maintenance of synaptic potentiation. Neurosci. Behav. Physiol. 47(5), 528–533 (2017). Scholar
  17. 17.
    Lemon, N., Manahan-Vaughan, D.: Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J. Neurosci. 26(29), 7723–7729 (2006). Scholar
  18. 18.
    Moult, P.R., Cross, A., Santos, S.D., Carvalho, A.L., Lindsay, Y., Connolly, C.N., Irving, A.J., Leslie, N.R., Harvey, J.: Leptin regulates AMPA receptor trafficking via PTEN inhibition. J. Neurosci. 30(11), 4088–4101 (2010). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Institute of Computational Technologies of SB RASNovosibirskRussia

Personalised recommendations