Advertisement

Forecasting of Influenza-like Illness Incidence in Amur Region with Neural Networks

  • A. V. Burdakov
  • A. O. Ukharov
  • M. P. Myalkin
  • V. I. Terekhov
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 799)

Abstract

Influenza-like illness (ILI) incidence forecasting strengthens disease control and prevention. The virus, host and host behavior factors influencing ILI outbreaks have been studied for decades. A range of statistical and machine learning forecasting methods was developed. These novel machine learning methods require inclusion of a proper factor set based on a systematic research. The conventional forecast evaluation metrics such as Mean Absolute Error (MAE) do not adequately reflect the epidemiological requirements and shall be replaced with tailored evaluation criteria. This paper discusses selection of the main influencing factors based on the recent epidemiological research, and proposes new epidemiological forecast evaluation criteria to asses early-warning power of the short-term forecasting model. It describes development of a prediction model based on a Long-Short Term Memory (LSTM) neural network. The model was implemented, trained, validated and tested on the 2007–2018 historical data set and compared to Local Autoregressive Models, Autoregressive Integrated Moving Average, and Multivariate Regression methods.

Keywords

Influenza-like-Illness Forecast Neural networks Deep learning Machine learning LSTM 

References

  1. 1.
    Pittaway, J.K., et al.: Make vitamin D while the sun shines, take supplements when it doesn′t: a longitudinal, observational study of older adults in Tasmania, Australia. PLoS One 8(3), e59063 (2013)CrossRefGoogle Scholar
  2. 2.
    Tabataba, F.S., et al.: A framework for evaluating epidemic forecasts. BMC Infect. Dis. 17(1), 345 (2017)CrossRefGoogle Scholar
  3. 3.
    Kingma, D.P., Adam, B.J.: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980
  4. 4.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  5. 5.
    Lipsitch, M., Viboud, C.: Influenza seasonality: lifting the fog. Proc. Natl. Acad. Sci. 106(10), 3645–3646 (2009)CrossRefGoogle Scholar
  6. 6.
    Garza, R.C., et al.: Effect of winter school breaks on influenza-like illness, Argentina, 2005–2008. Emerg. Infect. Dis. 19(6), 938 (2013)CrossRefGoogle Scholar
  7. 7.
    Shcherbakov, M.V., et al.: A survey of forecast error measures. World Appl. Sci. J. 24, 171–176 (2013)Google Scholar
  8. 8.
  9. 9.
    Xue, H., et al.: Influenza activity surveillance based on multiple regression model and artificial neural network. IEEE Access 6, 563–575 (2018)CrossRefGoogle Scholar
  10. 10.
    Venna, S.R. et al.: A novel data-driven model for real-time influenza forecasting. bioRxiv, 185512 (2017)Google Scholar
  11. 11.
    Zhang, J., Nawata, K.: A comparative study on predicting influenza outbreaks. Biosci. Trends 11(5), 533–541 (2017)CrossRefGoogle Scholar
  12. 12.
    Altizer, S., et al.: Seasonality and the dynamics of infectious diseases. Ecol. lett. 9(4), 467–484 (2006)CrossRefGoogle Scholar
  13. 13.
    Leonenko, V.N., Bochenina, K.O., Kesarev, S.A.: Influenza peaks forecasting in Russia: assessing the applicability of statistical methods. Procedia Comput. Sci. 108, 2363–2367 (2017)CrossRefGoogle Scholar
  14. 14.
    Lowen, A.C., Steel, J.: Roles of humidity and temperature in shaping influenza seasonality. J. Virol. 88(14), 7692–7695 (2014)CrossRefGoogle Scholar
  15. 15.
    Dorffner, G.: Neural networks for time series processing. Neural Network World (1996)Google Scholar
  16. 16.
    Chollet, F.: Deep Learning with Python, 386 p. Manning Publications Co., Shelter Island (2018)Google Scholar
  17. 17.
    Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. V. Burdakov
    • 1
  • A. O. Ukharov
    • 2
  • M. P. Myalkin
    • 1
  • V. I. Terekhov
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.PH Informatics, Corp.New YorkUSA

Personalised recommendations