Artificial Neural Networks for Diagnostics of Water-Ethanol Solutions by Raman Spectra

  • Igor IsaevEmail author
  • Sergey Burikov
  • Tatiana DolenkoEmail author
  • Kirill Laptinskiy
  • Sergey Dolenko
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 799)


The present paper is devoted to an elaboration of a method of diagnosis of alcoholic beverages using artificial neural networks: the inverse problem of spectroscopy – determination of concentrations of ethanol, methanol, fusel oil, ethyl acetate in water-ethanol solutions – was solved using Raman spectra. We obtained the following accuracies of concentration determination: 0.25% vol. for ethanol, 0.19% vol. for fusel oil, 0.35% vol. for methanol, and 0.29% vol. for ethyl acetate. The obtained results demonstrate the prospects of using Raman spectroscopy in combination with modern data processing methods (artificial neural networks) for the elaboration of an express non-contact method of detection of harmful and dangerous impurities in alcoholic beverages, as well as for the detection of counterfeit and low-quality beverages.


Neural networks Inverse problems Raman spectroscopy Water-ethanol solutions 


  1. 1.
    Marianski, S., Marianski, A.: Home Production of Vodkas. Infusions & Liqueurs. Bookmagic, LLC (2012)Google Scholar
  2. 2.
    Fuerst, A.: Determination of alcohol by pycnometer. Ind. Eng. Chem. Anal. Ed. 2(1), 30–31 (1930)CrossRefGoogle Scholar
  3. 3.
    Owuama, C., Ododo, J.: Refractometric determination of ethanol concentration. Food Chem. 48(4), 415–417 (1993)CrossRefGoogle Scholar
  4. 4.
    Iland, P., Ewart, A., et al.: Techniques for Chemical Analysis and Quality Monitoring during Winemaking. Patrick Iland Wine Promotions, Campbelltown (2000)Google Scholar
  5. 5.
    Leary, J.: A quantitative gas chromatographic ethanol determination. J. Chem. Educ. 60(8), 675 (1983)CrossRefGoogle Scholar
  6. 6.
    Isaac-Lam, M.: Determination of Alcohol Content in Alcoholic Beverages Using 45 MHz Benchtop NMR Spectrometer. Intern. J. of Spectroscopy 2016, Art.ID 2526946, 8 pp. (2016)Google Scholar
  7. 7.
    Zuriarrain, A., Zuriarrain, J., Villar, M., Berregi, I.: Quantitative determination of ethanol in cider by 1H NMR spectrometry. Food Control 50, 758–762 (2015)CrossRefGoogle Scholar
  8. 8.
    Lachenmeier, D., et al.: Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor. Chem. Cent. J. 4, 5 (2010)CrossRefGoogle Scholar
  9. 9.
    Burikov, S., Dolenko, T., et al.: Diagnostics of aqueous ethanol solutions using Raman spectroscopy. Atmos. Ocean. Opt. 22(11), 1082–1088 (2009)Google Scholar
  10. 10.
    Ilaslan, K., Boyaci, I., Topcu, A.: Rapid analysis of glucose, fructose and sucrose contents of commercial soft drinks using Raman spectroscopy. Food Control 48, 56–61 (2015)CrossRefGoogle Scholar
  11. 11.
    Hu, N., Wu, D., et al.: Structurability: a collective measure of the structural differences in vodkas. J. Agric. Food Chem. 58(12), 7394–7401 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Burikov, S., Dolenko, S., et al.: Decomposition of water Raman stretching band with a combination of optimization methods. Mol. Phys. 108(6), 739–747 (2010)CrossRefGoogle Scholar
  13. 13.
    Boyaci, I., Genis, H., et al.: A novel method for quantification of ethanol and methanol in distilled alcoholic beverages using Raman spectroscopy. J. Raman Spectrosc. 43(8), 1171–1176 (2012)CrossRefGoogle Scholar
  14. 14.
    Kiefer, J., Cromwell, A.: Analysis of single malt Scotch whisky using Raman spectroscopy. Anal. Methods 9, 511–518 (2017)CrossRefGoogle Scholar
  15. 15.
    Burikov, S., Dolenko, S., et al.: Neural network solution of the inverse problem of identification and determination of partial concentrations of inorganic salts in multicomponent aqueous solution. In: Proceedings of XII Russian Scientific-Technical Conference “Neuroinformatics-2010”, part 2, pp. 100–110. MEPhI, Moscow (2010)Google Scholar
  16. 16.
    Dolenko, S., Burikov, S., et al.: Adaptive methods for solving inverse problems in laser raman spectroscopy of multi-component solutions. Pattern Recognit. Image Anal. 22(4), 551–558 (2012)CrossRefGoogle Scholar
  17. 17.
    Hassoun, M.: Fundamentals of Artificial Neural Networks, 1st edn. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  18. 18.
    Dolenko, S., Burikov, S., et al.: Neural network approaches to solution of the inverse problem of identification and determination of partial concentrations of salts in multi-component water solutions. In: Wermter, S., Weber, C., et al. (eds.) ICANN 2014, LNCS, vol. 8681, pp. 805–812. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Martelo-Vidal, M., Vázquez, M.: Application of artificial neural networks coupled to UV–VIS–NIR spectroscopy for the rapid quantification of wine compounds in aqueous mixtures. CyTA J. Food 13(1), 32–39 (2015)CrossRefGoogle Scholar
  20. 20.
    Liu, W., Yang, W., Liu, L., Yu, Q.: Use of artificial neural networks in near-infrared spectroscopy calibrations for predicting glucose concentration in Urine. In: Huang, D.-S., Wunsch, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 1040–1046. Springer, Heidelberg (2008)Google Scholar
  21. 21.
    International Programme on Chemical Safety (IPCS). Environmental Health Criteria 196: Methanol, pp. 1–9 (1997)Google Scholar
  22. 22.
    Hazardous substances in industry. Handbook for chemists, engineers, and physicians, 7th edn. Volume 1. Organic substances. Lazarev, N., Levina, E. (eds.) Khimija Publ., Leningrad (1977). (in Russian)Google Scholar
  23. 23.
    Gosselin, R., Smith, R., Hodge, H.: Clinical Toxicology of Commercial Products, 5th edn. Williams & Wilkins, Baltimore (1984)Google Scholar
  24. 24.
    Golikov, S. (ed.): Emergency treatment of acute poisoning. Meditsina Publishers, Moscow, 312 pp. (1978). (In Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.D.V. Skobeltsyn Institute of Nuclear PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Physical DepartmentM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations