Advertisement

Solid Tumors Outside of the Central Nervous System

  • Hilary C. Schreiber
  • James S. KillingerEmail author
Chapter

Abstract

Solid tumors outside of the central nervous system present interesting challenges to the pediatric intensivist. In this chapter uncommon, but life-threatening, clinical circumstances will be described – particularly as they relate to solid tumors in the chest. Children with anterior mediastinal masses require a thoughtful, multidisciplinary approach to ensure safe diagnosis and treatment. Additionally, the management of less common solid tumors such as neuroblastoma and desmoplastic small round blue cell tumors provides some insight into the use of innovative treatment strategies that may become more prevalent in the coming years. Finally, care strategies geared toward early recovery after surgery are integral to the care of patients with solid tumors requiring surgical resection and are increasingly employed in pediatric intensive care units. These strategies are integral to the overall management plan for patients with solid tumors.

Keywords

Pediatrics Neuroblastoma Sarcoma Immunotherapy Oncology Pediatric Intensive Care Unit 

References

  1. 1.
    Acker SN, Linton J, Tan GM, Garrington TP, Bruny J, Hilden JM, et al. A multidisciplinary approach to the management of anterior mediastinal masses in children. J Pediatr Surg. 2015;50(5):875–8.  https://doi.org/10.1016/j.jpedsurg.2014.09.054.CrossRefPubMedGoogle Scholar
  2. 2.
    Carter BW, Marom EM, Detterbeck FC. Approaching the patient with an anterior mediastinal mass: a guide for clinicians. J Thorac Oncol. 2014;9(9 Suppl 2):S102–9.  https://doi.org/10.1097/jto.0000000000000294.CrossRefPubMedGoogle Scholar
  3. 3.
    Priola AM, Priola SM, Cardinale L, Cataldi A, Fava C. The anterior mediastinum: diseases. Radiol Med. 2006;111(3):312–42.  https://doi.org/10.1007/s11547-006-0032-5.CrossRefPubMedGoogle Scholar
  4. 4.
    Shamberger RC, Holzman RS, Griscom NT, Tarbell NJ, Weinstein HJ. CT quantitation of tracheal cross-sectional area as a guide to the surgical and anesthetic management of children with anterior mediastinal masses. J Pediatr Surg. 1991;26(2):138–42.CrossRefGoogle Scholar
  5. 5.
    Bechard P, Letourneau L, Lacasse Y, Cote D, Bussieres JS. Perioperative cardiorespiratory complications in adults with mediastinal mass: incidence and risk factors. Anesthesiology. 2004;100(4):826–34. discussion 5A.CrossRefGoogle Scholar
  6. 6.
    Stricker PA, Gurnaney HG, Litman RS. Anesthetic management of children with an anterior mediastinal mass. J Clin Anesth. 2010;22(3):159–63.  https://doi.org/10.1016/j.jclinane.2009.10.004.CrossRefPubMedGoogle Scholar
  7. 7.
    Shamberger RC. Preanesthetic evaluation of children with anterior mediastinal masses. Semin Pediatr Surg. 1999;8(2):61–8.CrossRefGoogle Scholar
  8. 8.
    Shamberger RC, Holzman RS, Griscom NT, Tarbell NJ, Weinstein HJ, Wohl ME. Prospective evaluation by computed tomography and pulmonary function tests of children with mediastinal masses. Surgery. 1995;118(3):468–71.CrossRefGoogle Scholar
  9. 9.
    Blank RS, de Souza DG. Anesthetic management of patients with an anterior mediastinal mass: continuing professional development. Can J Anaesth. 2011;58(9):853.  https://doi.org/10.1007/s12630-011-9539-x.CrossRefPubMedGoogle Scholar
  10. 10.
    Erdos G, Kunde M, Tzanova I, Werner C. Anaesthesiological management of mediastinal tumors. Anaesthesist. 2005;54(12):1215–28.  https://doi.org/10.1007/s00101-005-0895-1.CrossRefPubMedGoogle Scholar
  11. 11.
    Choi YH, Lee DH. A rare airway obstruction caused by dissection of a reinforced endotracheal tube. J Emerg Med. 2018.  https://doi.org/10.1016/j.jemermed.2017.12.043.CrossRefGoogle Scholar
  12. 12.
    Kim SH, Park AY, Cho HB, Yoo JH, Park SY, Chung JW, et al. A rare case of nonresterilized reinforced ETT obstruction caused by a structural defect: a case report. Medicine. 2017;96(48):e8886.  https://doi.org/10.1097/md.0000000000008886.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shim SM, Park JH, Hyun DM, Lee HM. Airway obstruction by dissection of the inner layer of a reinforced endotracheal tube in a patient with Ludwig’s angina: a case report. J Dent Anesth Pain Med. 2017;17(2):135–8.  https://doi.org/10.17245/jdapm.2017.17.2.135.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gardner JC, Royster RL. Airway collapse with an anterior mediastinal mass despite spontaneous ventilation in an adult. Anesth Analg. 2011;113(2):239–42.  https://doi.org/10.1213/ANE.0b013e31821f9c95.CrossRefPubMedGoogle Scholar
  15. 15.
    Asai T. Emergency cardiopulmonary bypass in a patient with a mediastinal mass. Anaesthesia. 2007;62(8):859–60.  https://doi.org/10.1111/j.1365-2044.2007.05210.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Said SM, Telesz BJ, Makdisi G, Quevedo FJ, Suri RM, Allen MS, et al. Awake cardiopulmonary bypass to prevent hemodynamic collapse and loss of airway in a severely symptomatic patient with a mediastinal mass. Ann Thorac Surg. 2014;98(4):e87–90.  https://doi.org/10.1016/j.athoracsur.2014.06.104.CrossRefPubMedGoogle Scholar
  17. 17.
    Sendasgupta C, Sengupta G, Ghosh K, Munshi A, Goswami A. Femoro-femoral cardiopulmonary bypass for the resection of an anterior mediastinal mass. Indian J Anaesth. 2010;54(6):565–8.  https://doi.org/10.4103/0019-5049.72649.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Polaner DM. The use of heliox and the laryngeal mask airway in a child with an anterior mediastinal mass. Anesth Analg. 1996;82(1):208–10.PubMedGoogle Scholar
  19. 19.
    Bigham MT, Nowak JE, Wheeler DS. Therapeutic application of helium-oxygen and mechanical ventilation in a child with acute myelogenous leukemia and airway obstruction. Pediatr Emerg Care. 2009;25(7):469–72.  https://doi.org/10.1097/PEC.0b013e3181aba7de.CrossRefPubMedGoogle Scholar
  20. 20.
    Whittle SB, Smith V, Doherty E, Zhao SB, McCarty S, Zage PE. Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther. 2017;17(4):369–86.  https://doi.org/10.1080/14737140.2017.1285230.CrossRefPubMedGoogle Scholar
  21. 21.
    Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Primers. 2016;2:21.  https://doi.org/10.1038/nrdp.2016.78.CrossRefGoogle Scholar
  22. 22.
    Sait S, Modak S. Anti-GD2 immunotherapy for neuroblastoma. Expert Rev Anticancer Ther. 2017;17(10):889–904.  https://doi.org/10.1080/14737140.2017.1364995.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. N Engl J Med. 1999;341(16):1165–73.  https://doi.org/10.1056/nejm199910143411601.CrossRefPubMedGoogle Scholar
  24. 24.
    Cheung NKV, Kushner BH, Yeh SDJ, Larson SM. 3F8 monoclonal antibody treatment of patients with stage 4 neuroblastoma: a phase II study. Int J Oncol. 1998;12(6):1299–306.PubMedGoogle Scholar
  25. 25.
    Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363(14):1324–34.  https://doi.org/10.1056/NEJMoa0911123.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gorges M, West N, Deyell R, Winton P, Cheung W, Lauder G. Dexmedetomidine and hydromorphone: a novel pain management strategy for the oncology ward setting during anti-GD2 immunotherapy for high-risk neuroblastoma in children. Pediatr Blood Cancer. 2015;62(1):29–34.  https://doi.org/10.1002/pbc.25197.CrossRefPubMedGoogle Scholar
  27. 27.
    Wallace MS, Lee J, Sorkin L, Dunn JS, Yaksh T, Yu A. Intravenous lidocaine: effects on controlling pain after anti-GD(2) antibody therapy in children with neuroblastoma – a report of a series. Anesth Analg. 1997;85(4):794–6.  https://doi.org/10.1097/00000539-199710000-00014.CrossRefPubMedGoogle Scholar
  28. 28.
    Zempsky WT, Loiselle KA, Corsi JM, Hagstrom JN. Use of low-dose ketamine infusion for pediatric patients with sickle cell disease-related pain a case series. Clin J Pain. 2010;26(2):163–7.  https://doi.org/10.1097/AJP.0b013e3181b511ab.CrossRefPubMedGoogle Scholar
  29. 29.
    Bredlau AL, Thakur R, Korones DN, Dworkin RH. Ketamine for pain in adults and children with cancer: a systematic review and synthesis of the literature. Pain Med. 2013;14(10):1505–17.  https://doi.org/10.1111/pme.12182.CrossRefPubMedGoogle Scholar
  30. 30.
    Kushner BH, Modak S, Basu EM, Roberts SS, Kramer K, Cheung NKV. Posterior reversible encephalopathy syndrome in neuroblastoma patients receiving anti-G(D2) 3F8 monoclonal antibody. Cancer. 2013;119(15):2789–95.  https://doi.org/10.1002/cncr.28137.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Neil EC, Hanmantgad S, Khakoo Y. Neurological complications of pediatric cancer. J Child Neurol. 2016;31(12):1412–20.  https://doi.org/10.1177/0883073815620673.CrossRefPubMedGoogle Scholar
  32. 32.
    Punt J, Pritchard J, Pincott JR, Till K. Neuro-blastoma – a review of 21 cases presenting with spinal-cord compression. Cancer. 1980;45(12):3095–101.  https://doi.org/10.1002/1097-0142(19800615)45:12<3095::aid-cncr2820451236>3.0.co;2-y.CrossRefPubMedGoogle Scholar
  33. 33.
    Kraal K, Blom T, van Noesel M, Kremer L, Caron H, Tytgat G, et al. Treatment and outcome of neuroblastoma with intraspinal extension: a systematic review. Pediatr Blood Cancer. 2017;64(8):12.  https://doi.org/10.1002/pbc.26451.CrossRefGoogle Scholar
  34. 34.
    Ross SLP, Greenwald BM, Howell JD, Pon S, Rutigliano DN, Spicyn N, et al. Outcomes following thoracoabdominal resection of neuroblastoma. Pediatr Crit Care Med. 2009;10(6):681–6.  https://doi.org/10.1097/PCC.0b013e3181a708c1.CrossRefPubMedGoogle Scholar
  35. 35.
    Dorfman HD, Czerniak B. Bone cancers. Cancer. 1995;75(1 Suppl):203–10.CrossRefGoogle Scholar
  36. 36.
    Meyers PA, Schwartz CL, Krailo MD, Healey JH, Bernstein ML, Betcher D, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival – a report from the Children’s Oncology Group. J Clin Oncol. 2008;26(4):633–8.  https://doi.org/10.1200/jco.2008.14.0095.CrossRefPubMedGoogle Scholar
  37. 37.
    Chi SN, Conklin LS, Qin J, Meyers PA, Huvos AG, Healey JH, et al. The patterns of relapse in osteosarcoma: the Memorial Sloan-Kettering experience. Pediatr Blood Cancer. 2004;42(1):46–51.  https://doi.org/10.1002/pbc.10420.CrossRefPubMedGoogle Scholar
  38. 38.
    Su WT, Chewning J, Abramson S, Rosen N, Gholizadeh M, Healey J, et al. Surgical management and outcome of osteosarcoma patients with unilateral pulmonary metastases. J Pediatr Surg. 2004;39(3):418–23.  https://doi.org/10.1016/j.jpedsurg.2003.11.030.CrossRefPubMedGoogle Scholar
  39. 39.
    Harting MT, Blakely ML, Jaffe N, Cox CS Jr, Hayes-Jordan A, Benjamin RS, et al. Long-term survival after aggressive resection of pulmonary metastases among children and adolescents with osteosarcoma. J Pediatr Surg. 2006;41(1):194–9.  https://doi.org/10.1016/j.jpedsurg.2005.10.089.CrossRefPubMedGoogle Scholar
  40. 40.
    Heaton TE, Hammond WJ, Farber BA, Pallos V, Meyers PA, Chou AJ, et al. A 20-year retrospective analysis of CT-based pre-operative identification of pulmonary metastases in patients with osteosarcoma: a single-center review. J Pediatr Surg. 2017;52(1):115–9.  https://doi.org/10.1016/j.jpedsurg.2016.10.034.CrossRefPubMedGoogle Scholar
  41. 41.
    Chou J, Chan CW, Chalkiadis GA. Post-thoracotomy pain in children and adolescence: a retrospective cross-sectional study. Pain Med (Malden, Mass). 2014;15(3):452–9.CrossRefGoogle Scholar
  42. 42.
    Soliman IE, Apuya JS, Fertal KM, Simpson PM, Tobias JD. Intravenous versus epidural analgesia after surgical repair of pectus excavatum. Am J Ther. 2009;16(5):398–403.  https://doi.org/10.1097/MJT.0b013e318187de3e.CrossRefPubMedGoogle Scholar
  43. 43.
    Traube C, Augenstein J, Greenwald B, LaQuaglia M, Silver G. Neuroblastoma and pediatric delirium: a case series. Pediatr Blood Cancer. 2014;61(6):1121–3.  https://doi.org/10.1002/pbc.24917.CrossRefPubMedGoogle Scholar
  44. 44.
    Honore C, Amroun K, Vilcot L, Mir O, Domont J, Terrier P, et al. Abdominal desmoplastic small round cell tumor: multimodal treatment combining chemotherapy, surgery, and radiotherapy is the best option. Ann Surg Oncol. 2015;22(4):1073–9.  https://doi.org/10.1245/s10434-014-4123-6.CrossRefPubMedGoogle Scholar
  45. 45.
    Lal DR, Su WT, Wolden SL, Loh KC, Modak S, La Quaglia MP. Results of multimodal treatment for desmoplastic small round cell tumors. J Pediatr Surg. 2005;40(1):251–5.  https://doi.org/10.1016/j.jpedsurg.2004.09.046.CrossRefPubMedGoogle Scholar
  46. 46.
    Kushner BH, LaQuaglia MP, Wollner N, Meyers PA, Lindsley KL, Ghavimi F, et al. Desmoplastic small round-cell tumor: prolonged progression-free survival with aggressive multimodality therapy. J Clin Oncol. 1996;14(5):1526–31.  https://doi.org/10.1200/jco.1996.14.5.1526.CrossRefPubMedGoogle Scholar
  47. 47.
    Hayes-Jordan A, LaQuaglia MP, Modak S. Management of desmoplastic small round cell tumor. Semin Pediatr Surg. 2016;25(5):299–304.  https://doi.org/10.1053/j.sempedsurg.2016.09.005.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zmora O, Hayes-Jordan A, Nissan A, Kventsel I, Newmann Y, Itskovsky K, et al. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) for disseminated intraabdominal malignancies in children-a single-institution experience. J Pediatr Surg. 2017.  https://doi.org/10.1016/j.jpedsurg.2017.09.014.CrossRefGoogle Scholar
  49. 49.
    Stirrups R. HIPEC improves survival in stage III epithelial ovarian cancer. Lancet Oncol. 2018.  https://doi.org/10.1016/s1470-2045(18)30065-2.CrossRefGoogle Scholar
  50. 50.
    van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, HWR S, RHM H, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018;378(3):230–40.  https://doi.org/10.1056/NEJMoa1708618.CrossRefPubMedGoogle Scholar
  51. 51.
    Hayes-Jordan AA, Coakley BA, Green HL, Xiao L, Fournier KF, Herzog CE, et al. Desmoplastic small round cell tumor treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: results of a phase 2 trial. Ann Surg Oncol. 2018.  https://doi.org/10.1245/s10434-018-6333-9.CrossRefGoogle Scholar
  52. 52.
    Honore C, Atallah V, Mir O, Orbach D, Ferron G, LePechoux C, et al. Abdominal desmoplastic small round cell tumor without extraperitoneal metastases: is there a benefit for HIPEC after macroscopically complete cytoreductive surgery? PLoS One. 2017;12(2):e0171639.  https://doi.org/10.1371/journal.pone.0171639.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    West MA, Horwood JF, Staves S, Jones C, Goulden MR, Minford J, et al. Potential benefits of fast-track concepts in paediatric colorectal surgery. J Pediatr Surg. 2013;48(9):1924–30.  https://doi.org/10.1016/j.jpedsurg.2013.02.063.CrossRefPubMedGoogle Scholar
  54. 54.
    Gustafsson UO, Scott MJ, Schwenk W, Demartines N, Roulin D, Francis N, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr (Edinburgh, Scotland). 2012;31(6):783–800.  https://doi.org/10.1016/j.clnu.2012.08.013.CrossRefPubMedGoogle Scholar
  55. 55.
    Nygren J, Thacker J, Carli F, Fearon KC, Norderval S, Lobo DN, et al. Guidelines for perioperative care in elective rectal/pelvic surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr (Edinburgh, Scotland). 2012;31(6):801–16.  https://doi.org/10.1016/j.clnu.2012.08.012.CrossRefPubMedGoogle Scholar
  56. 56.
    Lassen K, Coolsen MM, Slim K, Carli F, de Aguilar-Nascimento JE, Schafer M, et al. Guidelines for perioperative care for pancreaticoduodenectomy: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr (Edinburgh, Scotland). 2012;31(6):817–30.  https://doi.org/10.1016/j.clnu.2012.08.011.CrossRefPubMedGoogle Scholar
  57. 57.
    Fearon KC, Ljungqvist O, Von Meyenfeldt M, Revhaug A, Dejong CH, Lassen K, et al. Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. Clin Nutr (Edinburgh, Scotland). 2005;24(3):466–77.  https://doi.org/10.1016/j.clnu.2005.02.002.CrossRefPubMedGoogle Scholar
  58. 58.
    Grewal H, Sweat J, Vazquez WD. Laparoscopic appendectomy in children can be done as a fast-track or same-day surgery. JSLS. 2004;8(2):151–4.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Mohamed M, Hollins G, Eissa M. Experience in performing pyelolithotomy and pyeloplasty in children on day-surgery basis. Urology. 2004;64(6):1220–2 discussion 2–3.  https://doi.org/10.1016/j.urology.2004.08.065.CrossRefPubMedGoogle Scholar
  60. 60.
    Mulholland TL, Kropp BP, Wong C. Laparoscopic renal surgery in infants 10 kg or less. J Endourol. 2005;19(3):397–400.  https://doi.org/10.1089/end.2005.19.397.CrossRefPubMedGoogle Scholar
  61. 61.
    Vricella LA, Dearani JA, Gundry SR, Razzouk AJ, Brauer SD, Bailey LL. Ultra fast track in elective congenital cardiac surgery. Ann Thorac Surg. 2000;69(3):865–71.CrossRefGoogle Scholar
  62. 62.
    Reismann M, Dingemann J, Wolters M, Laupichler B, Suempelmann R, Ure BM. Fast-track concepts in routine pediatric surgery: a prospective study in 436 infants and children. Langenbeck’s Arch Surg. 2009;394(3):529–33.  https://doi.org/10.1007/s00423-008-0440-1.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2019

Authors and Affiliations

  1. 1.Memorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations