Corneal Endothelial Cells: Methods for Ex Vivo Expansion

  • Stephen Wahlig
  • Matthew Lovatt
  • Gary Swee-Lim Peh
  • Jodhbir S. Mehta
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Allogeneic corneal transplantation is currently the only treatment for corneal blindness due to endothelial dysfunction. However, this approach is limited due to the finite number of available donor corneas. Cellular therapy is a potential alternative, in which endothelial cells from donor corneas are grown in vitro to sufficient numbers for treatment of multiple patients. Although corneal endothelial cells are thought to be nonproliferative in vivo, several culture systems for in vitro expansion have been developed. This chapter describes the process of culturing primary endothelial cells, including a review of corneal endothelial cell biology, efforts to differentiate stem cells into endothelial-like cells, and techniques for cell isolation from donor corneas. It also discusses components of in vitro culture protocols, such as basal growth media, surface modifications, and media additives. Finally, it presents an overview of the markers used to identify corneal endothelial cells, an important component of quality assessment.


Cell therapy Cornea Endothelium Human corneal endothelial cells Cell markers Stem cells 


Conflict of Interest

No conflicting relationship exists for any author.

Financial Disclosure

No financial disclosures.

Compliance Statements

J. S. Mehta, M. Lovatt, G. Peh, and S. Wahlig declare that they have no conflict of interest. All procedures performed by the authors were followed and were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study. All institutional and national guidelines for the care and use of laboratory animals were followed.


  1. 1.
    Bonanno JA. Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res. 2012;95(1):2–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Maurice DM. The location of the fluid pump in the cornea. J Physiol. 1972;221(1):43–54.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bourne WM. Biology of the corneal endothelium in health and disease. Eye (Lond). 2003;17(8):912–8.CrossRefGoogle Scholar
  4. 4.
    Engelmann K, Bednarz J, Valtink M. Prospects for endothelial transplantation. Exp Eye Res. 2004;78(3):573–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Nuyts RM, Boot N, van Best JA, et al. Long term changes in human corneal endothelium following toxic endothelial cell destruction: a specular microscopic and fluorophotometric study. Br J Ophthalmol. 1996;80(1):15–20.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    O'Neal MR, Polse KA. Decreased endothelial pump function with aging. Invest Ophthalmol Vis Sci. 1986;27(4):457–63.PubMedGoogle Scholar
  7. 7.
    Peh GS, Beuerman RW, Colman A, et al. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011;91(8):811–9.CrossRefGoogle Scholar
  8. 8.
    Wilson SE, Bourne WM. Fuchs' dystrophy. Cornea. 1988;7(1):2–18.PubMedCrossRefGoogle Scholar
  9. 9.
    Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22(3):359–89.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Tan DT, Dart JK, Holland EJ, et al. Corneal transplantation. Lancet. 2012;379(9827):1749–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Borderie VM, Boelle PY, Touzeau O, et al. Predicted long-term outcome of corneal transplantation. Ophthalmology. 2009;116(12):2354–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Eye Bank Association of America. 2016; 2015 Eye Banking Statistical Report.Google Scholar
  13. 13.
    Gain P, Jullienne R, He Z, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134(2):167–73.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Baum JL, Niedra R, Davis C, et al. Mass culture of human corneal endothelial cells. Arch Ophthalmol. 1979;97(6):1136–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Choi JS, Kim EY, Kim MJ, et al. Factors affecting successful isolation of human corneal endothelial cells for clinical use. Cell Transplant. 2014;23(7):845–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakahara M, Okumura N, Kay EP, et al. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS One. 2013;8(7):e69009.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Okumura N, Ueno M, Koizumi N, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci. 2009;50(8):3680–7.CrossRefGoogle Scholar
  18. 18.
    Peh GS, Chng Z, Ang HP, et al. Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant. 2015;24(2):287–304.CrossRefGoogle Scholar
  19. 19.
    Peh GSL, Ang HP, Lwin CN, et al. Regulatory compliant tissue-engineered human corneal endothelial grafts restore corneal function of rabbits with bullous keratopathy. Sci Rep. 2017;7(1):14149.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Tan TE, Peh GS, George BL, et al. A cost-minimization analysis of tissue-engineered constructs for corneal endothelial transplantation. PLoS One. 2014;9(6):e100563.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Joyce NC, Harris DL, Mello DM. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci. 2002;43(7):2152–9.Google Scholar
  22. 22.
    Joyce NC, Meklir B, Joyce SJ, et al. Cell cycle protein expression and proliferative status in human corneal cells. Invest Ophthalmol Vis Sci. 1996;37(4):645–55.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Yokoi T, Seko Y, Yokoi T, et al. Establishment of functioning human corneal endothelial cell line with high growth potential. PLoS One. 2012;7(1):e29677.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Peh GS, Toh KP, Wu FY, et al. Cultivation of human corneal endothelial cells isolated from paired donor corneas. PLoS One. 2011;6(12):e28310.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zhu C, Joyce NC. Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci. 2004;45(6):1743–51.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lin F, Wang N, Zhang TC. The role of endothelial-mesenchymal transition in development and pathological process. IUBMB Life. 2012;64(9):717–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu YT, Chen HC, Chen SY, et al. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions. J Cell Sci. 2012;125(Pt 15):3636–48.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Joyce NC, Harris DL, Zieske JD. Mitotic inhibition of corneal endothelium in neonatal rats. Invest Ophthalmol Vis Sci. 1998;39(13):2572–83.PubMedGoogle Scholar
  29. 29.
    Ding V, Chin A, Peh G, et al. Generation of novel monoclonal antibodies for the enrichment and characterization of human corneal endothelial cells (hCENC) necessary for the treatment of corneal endothelial blindness. MAbs. 2014;6(6):1439–52.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Senoo T, Joyce NC. Cell cycle kinetics in corneal endothelium from old and young donors. Invest Ophthalmol Vis Sci. 2000;41(3):660–7.Google Scholar
  31. 31.
    Zaniolo K, Bostan C, Rochette Drouin O, et al. Culture of human corneal endothelial cells isolated from corneas with Fuchs endothelial corneal dystrophy. Exp Eye Res. 2012;94(1):22–31.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Matthaei M, Meng H, Meeker AK, et al. Endothelial Cdkn1a (p21) overexpression and accelerated senescence in a mouse model of Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2012;53(10):6718–27.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    He J, Kakazu AH, Bazan NG, et al. Aspirin-triggered lipoxin A4 (15-epi-LXA4) increases the endothelial viability of human corneas storage in Optisol-GS. J Ocul Pharmacol Ther. 2011;27(3):235–41.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Schroeter J, Ruggeri A, Thieme H, et al. Impact of temporary hyperthermia on corneal endothelial cell survival during organ culture preservation. Graefes Arch Clin Exp Ophthalmol. 2015;253(5):753–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Spelsberg H, Reinhard T, Sengler U, et al. Organ-cultured corneal grafts from septic donors: a retrospective study. Eye (Lond). 2002;16(5):622–7.CrossRefGoogle Scholar
  36. 36.
    Cotsarelis G, Cheng SZ, Dong G, et al. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989;57(2):201–9.CrossRefGoogle Scholar
  37. 37.
    Pellegrini G, Traverso CE, Franzi AT, et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349(9057):990–3.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Raviola G. Schwalbe line's cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci. 1982;22(1):45–56.PubMedGoogle Scholar
  39. 39.
    Acott TS, Samples JR, Bradley JM, et al. Trabecular repopulation by anterior trabecular meshwork cells after laser trabeculoplasty. Am J Ophthalmol. 1989;107(1):1–6.PubMedCrossRefGoogle Scholar
  40. 40.
    He Z, Campolmi N, Gain P, et al. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells. 2012;30(11):2523–34.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    McGowan SL, Edelhauser HF, Pfister RR, et al. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis. 2007;13:1984–2000.Google Scholar
  42. 42.
    Whikehart DR, Parikh CH, Vaughn AV, et al. Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol Vis. 2005;11:816–24.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Lwigale PY. Corneal development: different cells from a common progenitor. Prog Mol Biol Transl Sci. 2015;134:43–59.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hara S, Hayashi R, Soma T, et al. Identification and potential application of human corneal endothelial progenitor cells. Stem Cells Dev. 2014;23(18):2190–201.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lovatt M, Yam GH, Peh GS, et al. Directed differentiation of periocular mesenchyme from human embryonic stem cells, differentiation. 2018;99:62–9.Google Scholar
  46. 46.
    Katikireddy KR, Schmedt T, Price MO, et al. Existence of neural crest-derived progenitor cells in Normal and Fuchs endothelial dystrophy corneal endothelium. Am J Pathol. 2016;186(10):2736–50.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Schmedt T, Chen Y, Nguyen TT, et al. Telomerase immortalization of human corneal endothelial cells yields functional hexagonal monolayers. PLoS One. 2012;7(12):e51427.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    McCabe KL, Kunzevitzky NJ, Chiswell BP, et al. Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One. 2015;10(12):e0145266.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Zhang K, Pang K, Wu X. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2014;23(12):1340–54.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Joyce NC, Harris DL, Markov V, et al. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol Vis. 2012;18:547–64.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Zhao JJ, Afshari NA. Generation of human corneal endothelial cells via in vitro ocular lineage restriction of pluripotent stem cells. Invest Ophthalmol Vis Sci. 2016;57(15):6878–84.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Trounson A, Thakar RG, Lomax G, et al. Clinical trials for stem cell therapies. BMC Med. 2011;9:52.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Chambers SM, Fasano CA, Papapetrou EP, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Song Q, Yuan S, An Q, et al. Directed differentiation of human embryonic stem cells to corneal endothelial cell-like cells: a transcriptomic analysis. Exp Eye Res. 2016;151:107–14.CrossRefGoogle Scholar
  55. 55.
    Wu J, Izpisua Belmonte JC. Dynamic pluripotent stem cell states and their applications. Cell Stem Cell. 2015;17(5):509–25.PubMedCrossRefGoogle Scholar
  56. 56.
    Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010;28(9):1568–70.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lister R, Pelizzola M, Kida YS, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471(7336):68–73.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gamm DM, Phillips MJ, Singh R. Modeling retinal degenerative diseases with human iPS-derived cells: current status and future implications. Expert Rev Ophthalmol. 2013;8(3):213–6.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Yue BY, Sugar J, Gilboy JE, et al. Growth of human corneal endothelial cells in culture. Invest Ophthalmol Vis Sci. 1989;30(2):248–53.PubMedGoogle Scholar
  60. 60.
    Fabricant RN, Alpar AJ, Centifanto YM, et al. Epidermal growth factor receptors on corneal endothelium. Arch Ophthalmol. 1981;99(2):305–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Tripathi RC, Tripathi BJ. Human trabecular endothelium, corneal endothelium, keratocytes, and scleral fibroblasts in primary cell culture. A comparative study of growth characteristics, morphology, and phagocytic activity by light and scanning electron microscopy. Exp Eye Res. 1982;35(6):611–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Lie JT, Birbal R, Ham L, et al. Donor tissue preparation for Descemet membrane endothelial keratoplasty. J Cataract Refract Surg. 2008;34(9):1578–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Melles GR, Lander F, Rietveld FJ. Transplantation of Descemet's membrane carrying viable endothelium through a small scleral incision. Cornea. 2002;21(4):415–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Engelmann K, Bohnke M, Friedl P. Isolation and long-term cultivation of human corneal endothelial cells. Invest Ophthalmol Vis Sci. 1988;29(11):1656–62.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Engelmann K, Friedl P. Optimization of culture conditions for human corneal endothelial cells. In Vitro Cell Dev Biol. 1989;25(11):1065–72.PubMedCrossRefGoogle Scholar
  66. 66.
    Engelmann K, Friedl P. Growth of human corneal endothelial cells in a serum-reduced medium. Cornea. 1995;14(1):62–70.PubMedCrossRefGoogle Scholar
  67. 67.
    Proulx S, Bourget JM, Gagnon N, et al. Optimization of culture conditions for porcine corneal endothelial cells. Mol Vis. 2007;13:524–33.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Niu G, Choi JS, Wang Z, et al. Heparin-modified gelatin scaffolds for human corneal endothelial cell transplantation. Biomaterials. 2014;35(13):4005–14.PubMedCrossRefGoogle Scholar
  69. 69.
    Shima N, Kimoto M, Yamaguchi M, et al. Increased proliferation and replicative lifespan of isolated human corneal endothelial cells with L-ascorbic acid 2-phosphate. Invest Ophthalmol Vis Sci. 2011;52(12):8711–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Chen CH, Chen VN, Chen SC. Effect of chondroitin sulfate on the endothelium in corneal storage. Cornea. 1996;15(1):35–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Kimoto M, Shima N, Yamaguchi M, et al. Role of hepatocyte growth factor in promoting the growth of human corneal endothelial cells stimulated by L-ascorbic acid 2-phosphate. Invest Ophthalmol Vis Sci. 2012;53(12):7583–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Roy O, Leclerc VB, Bourget JM, et al. Understanding the process of corneal endothelial morphological change in vitro. Invest Ophthalmol Vis Sci. 2015;56(2):1228–37.CrossRefGoogle Scholar
  73. 73.
    Okumura N, Koizumi N, Ueno M, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol. 2012;181(1):268–77.CrossRefGoogle Scholar
  74. 74.
    Joko T, Shiraishi A, Akune Y, et al. Involvement of P38MAPK in human corneal endothelial cell migration induced by TGF-beta(2). Exp Eye Res. 2013;108:23–32.PubMedCrossRefGoogle Scholar
  75. 75.
    Kim TY, Kim WI, Smith RE, et al. Role of p27(Kip1) in cAMP- and TGF-beta2-mediated antiproliferation in rabbit corneal endothelial cells. Invest Ophthalmol Vis Sci. 2001;42(13):3142–9.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Okumura N, Kay EP, Nakahara M, et al. Inhibition of TGF-beta signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLoS One. 2013;8(2):e58000.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Saika S. TGFbeta pathobiology in the eye. Lab Investig. 2006;86(2):106–15.PubMedCrossRefGoogle Scholar
  78. 78.
    Cheong YK, Ngoh ZX, Peh GS, et al. Identification of cell surface markers glypican-4 and CD200 that differentiate human corneal endothelium from stromal fibroblasts. Invest Ophthalmol Vis Sci. 2013;54(7):4538–47.PubMedCrossRefGoogle Scholar
  79. 79.
    Peh GS, Adnan K, George BL, et al. The effects of rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep. 2015;5:9167.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    De Becker A, Van Riet I. Mesenchymal stromal cell therapy in hematology: from laboratory to clinic and Back again. Stem Cells Dev. 2015;24(15):1713–29.PubMedCrossRefGoogle Scholar
  81. 81.
    Vianna LM, Kallay L, Toyono T, et al. Use of human serum for human corneal endothelial cell culture. Br J Ophthalmol. 2015;99(2):267–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Chou ML, Burnouf T, Wang TJ. Ex vivo expansion of bovine corneal endothelial cells in xeno-free medium supplemented with platelet releasate. PLoS One. 2014;9(6):e99145.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rao BM, Zandstra PW. Culture development for human embryonic stem cell propagation: molecular aspects and challenges. Curr Opin Biotechnol. 2005;16(5):568–76.PubMedCrossRefGoogle Scholar
  84. 84.
    Gstraunthaler G. Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX. 2003;20(4):275–81.PubMedGoogle Scholar
  85. 85.
    Miyata K, Drake J, Osakabe Y, et al. Effect of donor age on morphologic variation of cultured human corneal endothelial cells. Cornea. 2001;20(1):59–63.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Yamaguchi M, Ebihara N, Shima N, et al. Adhesion, migration, and proliferation of cultured human corneal endothelial cells by laminin-5. Invest Ophthalmol Vis Sci. 2011;52(2):679–84.PubMedCrossRefGoogle Scholar
  87. 87.
    Palchesko RN, Lathrop KL, Funderburgh JL, et al. In vitro expansion of corneal endothelial cells on biomimetic substrates. Sci Rep. 2015;5:7955.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Okumura N, Kakutani K, Numata R, et al. Laminin-511 and -521 enable efficient in vitro expansion of human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2015;56(5):2933–42.CrossRefGoogle Scholar
  89. 89.
    Kabosova A, Azar DT, Bannikov GA, et al. Compositional differences between infant and adult human corneal basement membranes. Invest Ophthalmol Vis Sci. 2007;48(11):4989–99.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Numata R, Okumura N, Nakahara M, et al. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells. PLoS One. 2014;9(2):e88169.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Muhammad R, Peh GS, Adnan K, et al. Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells. Acta Biomater. 2015;19:138–48.PubMedCrossRefGoogle Scholar
  92. 92.
    Bartakova A, Alvarez-Delfin K, Weisman AD, et al. Novel identity and functional markers for human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(6):2749–62.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Chng Z, Peh GS, Herath WB, et al. High throughput gene expression analysis identifies reliable expression markers of human corneal endothelial cells. PLoS One. 2013;8(7):e67546.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Okumura N, Hirano H, Numata R, et al. Cell surface markers of functional phenotypic corneal endothelial cells. Invest Ophthalmol Vis Sci. 2014;55(11):7610–8.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dorfmueller S, Tan HC, Ngoh ZX, et al. Isolation of a recombinant antibody specific for a surface marker of the corneal endothelium by phage display. Sci Rep. 2016;6:21661.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    He Z, Forest F, Gain P, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Yoshihara M, Ohmiya H, Hara S, et al. Discovery of molecular markers to discriminate corneal endothelial cells in the human body. PLoS One. 2015;10(3):e0117581.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hamuro J, Toda M, Asada K, et al. Cell homogeneity indispensable for regenerative medicine by cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(11):4749–61.CrossRefGoogle Scholar
  99. 99.
    Quintanilla RH Jr, Asprer JS, Vaz C, et al. CD44 is a negative cell surface marker for pluripotent stem cell identification during human fibroblast reprogramming. PLoS One. 2014;9(1):e85419.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Volmer JB, Thompson LF, Blackburn MR. Ecto-5′-nucleotidase (CD73)-mediated adenosine production is tissue protective in a model of bleomycin-induced lung injury. J Immunol. 2006;176(7):4449–58.PubMedCrossRefGoogle Scholar
  101. 101.
    Masedunskas A, King JA, Tan F, et al. Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration. FEBS Lett. 2006;580(11):2637–45.PubMedCrossRefGoogle Scholar
  102. 102.
    Lee JG, Heur M. Interleukin-1beta-induced Wnt5a enhances human corneal endothelial cell migration through regulation of Cdc42 and RhoA. Mol Cell Biol. 2014;34(18):3535–45.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Sakane H, Yamamoto H, Matsumoto S, et al. Localization of glypican-4 in different membrane microdomains is involved in the regulation of Wnt signaling. J Cell Sci. 2012;125(Pt 2):449–60.PubMedCrossRefGoogle Scholar
  104. 104.
    Frausto RF, Le DJ, Aldave AJ. Transcriptomic analysis of cultured corneal endothelial cells as a validation for their use in cell replacement therapy. Cell Transplant. 2016;25(6):1159–76.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephen Wahlig
    • 1
  • Matthew Lovatt
    • 1
  • Gary Swee-Lim Peh
    • 1
  • Jodhbir S. Mehta
    • 2
  1. 1.Tissue Engineering and Stem Cell Group, The AcademiaSingapore Eye Research InstituteSingaporeSingapore
  2. 2.Singapore National Eye Centre, Department of Cornea and External DiseaseSingaporeSingapore

Personalised recommendations