Stem Cell Spheres for Corneal Regeneration

  • Salim Ismail
  • Jennifer J. McGhee
  • Ye Li
  • Jeremy John Mathan
  • Jinny Jung Yoon
  • Himanshu Wadhwa
  • Stephanie U-Shane Huang
  • Trevor SherwinEmail author
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Corneal cells isolated from the peripheral cornea and limbus can be cultured in vitro under sphere-forming conditions which enrich for stem and progenitor cells. These stem cell-enriched spheres represent a mixed population of cells comprising epithelial, limbal and stromal components which show promise as transplantable elements for corneal regeneration. Spheres are responsive to collagen stimulus and display dynamic behaviours that include directed cell migration, en masse sphere migration and cell proliferation and differentiation. Characterization of cells within spheres confirms retention of stem cell markers, while migratory cells express both stromal and epithelial cell differentiation markers. Upon mechanical injury, spheres respond with similar patterns akin to the wound healing response seen in vivo. Implantation of spheres into decellularized normal and diseased corneal tissue invokes a proliferative and migratory response preferentially over the corneal surface with some evidence of limbal reformation. Collectively, these findings suggest stem cell-enriched spheres may be used in future cell-based therapy as a way to introduce a well-defined and characterized stem cell population for the treatment of limbal stem cell deficiency and corneal dystrophies.


Cornea Stem cell Spheres Cell differentiation Cell migration Cell proliferation Limbus Sphere-forming assay Cell therapy Corneal regeneration 


Compliance with Ethical Requirements

  1. 1.

    Conflict of Interest

    Salim Ismail, Charles N. J. McGhee, Jennifer J. McGhee, Ye Li, Jeremy John Mathan, Jinny Jung Yoon, Himanshu Wadhwa, Stephanie U-Shane Huang and Trevor Sherwin declare that they have no conflict of interest.

  2. 2.

    Informed Consent/Human Studies

    All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

  3. 3.

    Animal Studies

    No animal studies were carried out by the authors for this article.



  1. 1.
    Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells (Dayton, Ohio). 2004;22(3):355–66.CrossRefGoogle Scholar
  2. 2.
    Grieve K, Ghoubay D, Georgeon C, Thouvenin O, Bouheraoua N, Paques M, et al. Three-dimensional structure of the mammalian limbal stem cell niche. Exp Eye Res. 2015;140:75–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Goldberg MF, Bron AJ. Limbal palisades of Vogt. Trans Am Ophthalmol Soc. 1982;80:155–71.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Townsend WM. The limbal palisades of Vogt. Trans Am Ophthalmol Soc. 1991;89:721–56.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol. 2005;89(5):529–32.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Yazdanpanah G, Jabbehdari S, Djalilian AR. Limbal and corneal epithelial homeostasis. Curr Opin Ophthalmol. 2017;28(4):348–54.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    West-Mays JA, Dwivedi DJ. The keratocyte: corneal stromal cell with variable repair phenotypes. Int J Biochem Cell Biol. 2006;38(10):1625–31.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Du Y, Funderburgh ML, Mann MM, SundarRaj N, Funderburgh JL. Multipotent stem cells in human corneal stroma. Stem Cells (Dayton, Ohio). 2005;23(9):1266–75.CrossRefGoogle Scholar
  9. 9.
    Pinnamaneni N, Funderburgh JL. Concise review: Stem cells in the corneal stroma. Stem Cells (Dayton, Ohio). 2012;30(6):1059–63.CrossRefGoogle Scholar
  10. 10.
    Dhamodaran K, Subramani M, Ponnalagu M, Shetty R, Das D. Ocular stem cells: a status update! Stem Cell Res Ther. 2014;5(2):56.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hashmani K, Branch MJ, Sidney LE, Dhillon PS, Verma M, McIntosh OD, et al. Characterization of corneal stromal stem cells with the potential for epithelial transdifferentiation. Stem Cell Res Ther. 2013;4(3):75.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Patel DV, McKelvie J, Sherwin T, McGhee C. Keratocyte progenitor cell transplantation: A novel therapeutic strategy for corneal disease. Med Hypotheses. 2013;80(2):122–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamagami S, Yokoo S, Mimura T, Takato T, Araie M, Amano S. Distribution of precursors in human corneal stromal cells and endothelial cells. Ophthalmology. 2007;114(3):433–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Amano S, Yamagami S, Mimura T, Uchida S, Yokoo S. Corneal stromal and endothelial cell precursors. Cornea. 2006;25(10 Suppl 1):S73–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Sherwin T. A new niche for the corneal epithelial stem cell. Clin Exp Ophthalmol. 2009;37(7):644–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Li J, Chen SY, Zhao XY, Zhang MC, Xie HT. Rat limbal niche cells prevent epithelial stem/progenitor cells from differentiation and proliferation by inhibiting Notch signaling pathway in vitro. Invest Ophthalmol Vis Sci. 2017;58(7):2968–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Blanpain C, Horsley V, Fuchs E. Epithelial stem cells: turning over new leaves. Cell. 2007;128(3):445–58.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gonzalez G, Sasamoto Y, Ksander BR, Frank MH, Frank NY. Limbal stem cells: identity, developmental origin, and therapeutic potential. Wiley Interdiscip Rev Dev Biol. 2018;7(2):e303.CrossRefGoogle Scholar
  19. 19.
    Galindo S, Herreras JM, Lopez-Paniagua M, Rey E, de la Mata A, Plata-Cordero M, et al. Therapeutic effect of human adipose tissue-derived mesenchymal stem cells in experimental corneal failure due to limbal stem cell niche damage. Stem Cells (Dayton, Ohio). 2017;35(10):2160–74.PubMedCrossRefGoogle Scholar
  20. 20.
    Bobba S, Di Girolamo N, Mills R, Daniell M, Chan E, Harkin DG, et al. Nature and incidence of severe limbal stem cell deficiency in Australia and New Zealand. Clin Exp Ophthalmol. 2017;45(2):174–81.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rossen J, Amram A, Milani B, Park D, Harthan J, Joslin C, et al. Contact lens-induced limbal stem cell deficiency. Ocul Surf. 2016;14(4):419–34.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gonzalez S, Chen L, Deng SX. Comparative study of xenobiotic-free media for the cultivation of human limbal epithelial stem/progenitor cells. Tissue Eng Part C Methods. 2017;23(4):219–27.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Dua HS, Saini JS, Azuara-Blanco A, Gupta P. Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol. 2000;48(2):83–92.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sejpal K, Bakhtiari P, Deng SX. Presentation, diagnosis and management of limbal stem cell deficiency. Middle East Afr J Ophthalmol. 2013;20(1):5–10.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kim KH, Mian SI. Diagnosis of corneal limbal stem cell deficiency. Curr Opin Ophthalmol. 2017;28(4):355–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Chuephanich P, Supiyaphun C, Aravena C, Bozkurt TK, Yu F, Deng SX. Characterization of the corneal subbasal nerve plexus in limbal stem cell deficiency. Cornea. 2017;36(3):347–52.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol. 2000;44(5):415–25.PubMedCrossRefGoogle Scholar
  28. 28.
    Huang AJ, Tseng SC, Kenyon KR. Alteration of epithelial paracellular permeability during corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 1990;31(3):429–35.PubMedGoogle Scholar
  29. 29.
    Puangsricharern V, Tseng SC. Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology. 1995;102(10):1476–85.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chidambaranathan GP, Mathews S, Panigrahi AK, Mascarenhas J, Prajna NV, Muthukkaruppan V. In vivo confocal microscopic analysis of limbal stroma in patients with limbal stem cell deficiency. Cornea. 2015;34(11):1478–86.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Jawaheer L, Anijeet D, Ramaesh K. Diagnostic criteria for limbal stem cell deficiency-a systematic literature review. Surv Ophthalmol. 2017;62(4):522–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Le Q, Yang Y, Deng SX, Xu J. Correlation between the existence of the palisades of Vogt and limbal epithelial thickness in limbal stem cell deficiency. Clin Exp Ophthalmol. 2017;45(3):224–31.PubMedCrossRefGoogle Scholar
  33. 33.
    Chan EH, Chen L, Yu F, Deng SX. Epithelial thinning in limbal stem cell deficiency. Am J Ophthalmol. 2015;160(4):669–77. e4PubMedCrossRefGoogle Scholar
  34. 34.
    Jalbert I, Stapleton F, Papas E, Sweeney DF, Coroneo M. In vivo confocal microscopy of the human cornea. Br J Ophthalmol. 2003;87(2):225–36.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT. Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells (Dayton, Ohio). 2007;25(6):1402–9.CrossRefGoogle Scholar
  36. 36.
    Lathrop KL, Gupta D, Kagemann L, Schuman JS, Sundarraj N. Optical coherence tomography as a rapid, accurate, noncontact method of visualizing the palisades of Vogt. Invest Ophthalmol Vis Sci. 2012;53(3):1381–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fernandes M, Sangwan VS, Rao SK, Basti S, Sridhar MS, Bansal AK, et al. Limbal stem cell transplantation. Indian J Ophthalmol. 2004;52(1):5–22.PubMedGoogle Scholar
  38. 38.
    Geerling G, Daniels JT, Dart JK, Cree IA, Khaw PT. Toxicity of natural tear substitutes in a fully defined culture model of human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2001;42(5):948–56.PubMedGoogle Scholar
  39. 39.
    Mantelli F, Argueso P. Functions of ocular surface mucins in health and disease. Curr Opin Allergy Clin Immunol. 2008;8(5):477–83.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Schornack MM. Limbal stem cell disease: management with scleral lenses. Clin Exp Optom. 2011;94(6):592–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Dua HS. The conjunctiva in corneal epithelial wound healing. Br J Ophthalmol. 1998;82(12):1407–11.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Anderson DF, Ellies P, Pires RT, Tseng SC. Amniotic membrane transplantation for partial limbal stem cell deficiency. Br J Ophthalmol. 2001;85(5):567–75.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989;96(5):709–22; discussion 22–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Baylis O, Figueiredo F, Henein C, Lako M, Ahmad S. 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem. 2011;112(4):993–1002.PubMedCrossRefGoogle Scholar
  45. 45.
    Holland EJ. Epithelial transplantation for the management of severe ocular surface disease. Trans Am Ophthalmol Soc. 1996;94:677–743.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Kolli S, Ahmad S, Lako M, Figueiredo F. Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells (Dayton, Ohio). 2010;28(3):597–610.Google Scholar
  47. 47.
    Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349(9057):990–3.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sangwan VS, Basu S, MacNeil S, Balasubramanian D. Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96(7):931–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ, et al. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol. 2007;52(5):483–502.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Haagdorens M, Van Acker SI, Van Gerwen V, Ni Dhubhghaill S, Koppen C, Tassignon MJ, et al. Limbal stem cell deficiency: current treatment options and emerging therapies. Stem Cells Int. 2016;2016:9798374.PubMedCrossRefGoogle Scholar
  51. 51.
    Chang CY, Green CR, McGhee CN, Sherwin T. Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence. Invest Ophthalmol Vis Sci. 2008;49(12):5279–86.PubMedCrossRefGoogle Scholar
  52. 52.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yokoo S, Yamagami S, Yanagi Y, Uchida S, Mimura T, Usui T, et al. Human corneal endothelial cell precursors isolated by sphere-forming assay. Invest Ophthalmol Vis Sci. 2005;46(5):1626–31.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li H, Dai Y, Shu J, Yu R, Guo Y, Chen J. Spheroid cultures promote the stemness of corneal stromal cells. Tissue Cell. 2015;47(1):39–48.PubMedCrossRefGoogle Scholar
  55. 55.
    Yoon JJ, Wang EF, Ismail S, McGhee JJ, Sherwin T. Sphere-forming cells from peripheral cornea demonstrate polarity and directed cell migration. Cell Biol Int. 2013;37(9):949–60.PubMedCrossRefGoogle Scholar
  56. 56.
    Chang CY, McGhee JJ, Green CR, Sherwin T. Comparison of stem cell properties in cell populations isolated from human central and limbal corneal epithelium. Cornea. 2011;30(10):1155–62.PubMedCrossRefGoogle Scholar
  57. 57.
    Mathan JJ, Ismail S, McGhee JJ, McGhee CN, Sherwin T. Sphere-forming cells from peripheral cornea demonstrate the ability to repopulate the ocular surface. Stem Cell Res Ther. 2016;7(1):81.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Huang SU, Yoon JJ, Ismail S, McGhee JJ, Sherwin T. Sphere-forming cells from peripheral cornea demonstrate a wound-healing response to injury. Cell Biol Int. 2015;39(11):1274–87.PubMedCrossRefGoogle Scholar
  59. 59.
    Mathan J, Ismail S, McGhee J, Sherwin T. Implantation of human peripheral corneal spheres into cadaveric human corneal tissue. Bio-Protocol. 2017;7(14):e2412.CrossRefGoogle Scholar
  60. 60.
    Yoon JJ, Ismail S, Sherwin T. Limbal stem cells: central concepts of corneal epithelial homeostasis. World J Stem Cells. 2014;6(4):391–403.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Salim Ismail
    • 1
  • Jennifer J. McGhee
    • 1
  • Ye Li
    • 1
  • Jeremy John Mathan
    • 1
  • Jinny Jung Yoon
    • 1
  • Himanshu Wadhwa
    • 1
  • Stephanie U-Shane Huang
    • 1
  • Trevor Sherwin
    • 1
    Email author
  1. 1.Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand

Personalised recommendations