Classical Techniques for Limbal Transplantation

  • Rafael I. Barraquer
  • Juan Alvarez de Toledo
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


The history of limbal transplantation can be traced back to over half a century. While the techniques of ex vivo cellular expansion have opened new perspectives in this field, the classical auto- and allografts involving keratolimbal, conjunctival-limbal, and other mucosal tissues remain the most frequently used and successful techniques for ocular surface reconstruction. This chapter reviews the background, concepts, and classification, as well as the indications, surgical details, results, and complications of the most usual techniques in this area.


Limbal stem cell transplantation Epithelial regeneration Limbal deficiency 


Compliance with Ethical Requirements

Rafael I. Barraquer and Juan Alvarez de Toledo declare that they have no conflict of interest. No human or animal studies were carried out by the authors for this chapter.


  1. 1.
    Barraquer J. Panel three discussion. In: King JH, McTigue JW, editors. The world cornea congress I. Washington, DC: Butterworths; 1965. p. 354.Google Scholar
  2. 2.
    Holland EJ. Management of limbal stem cell deficiency: a historical perspective, past, present, and future. Human Cell. 2015;34(Suppl:10):S9–15.Google Scholar
  3. 3.
    Strampelli B, Restivo Manfredi ML. Total keratectomy in leukomatous eye associated with autograft of a keratoconjunctival ring removed from the contralateral eye. Ann Ottalmol Clin Ocul. 1966;92:778–86.PubMedGoogle Scholar
  4. 4.
    Strampelli B. Ring autokeratoplasty. In: Rycroft PV, editor. Corneoplastic surgery. Oxford: Pergamon Press; 1969. p. 253–75.Google Scholar
  5. 5.
    Barraquer J, Rutllán J. Microsurgery of the cornea: an atlas and text book. Barcelona: Ed: Ediciones Scriba; 1984. p. 160–2.Google Scholar
  6. 6.
    Thoft RA. Conjunctival transplantation. Arch Ophthalmol. 1977;95:1425–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Thoft RA. Keratoepithelioplasty. Am J Ophthalmol. 1984;97:1–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Turgeon PW, Nauhein RC, Roat MI, et al. Indications for keratoepitelioplasty. Arch Ophthalmol. 1990;108:33–6.CrossRefGoogle Scholar
  9. 9.
    Buschke W, Friedenwald JS, Fleischmann W. Studies on the mitotic activity of the corneal epithelium; methods; the effects of colchicine, ether, cocaine and ephedrin. Bull Johns Hopkins Hosp. 1943;73:143–67.Google Scholar
  10. 10.
    Hanna C, O’Brien JE. Cell production and migration in the epithelial layer of the cornea. Arch Ophthalmol. 1960;64:536–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Mann I. A study of epithelial regeneration in the living eye. Br J Ophthalmol. 1944;28:26–40.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature. 1971;229:560–1.PubMedCrossRefGoogle Scholar
  13. 13.
    Schermer S, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103:49–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Kinoshita S, Friend J, Thoft RA. Biphasic cell proliferation in transdifferentiation of conjunctival to corneal epithelium in rabbits. Invest Ophthalmol Vis Sci. 1983;24:1008–14.PubMedGoogle Scholar
  15. 15.
    Potten CS, Loeffler M. Epidermal cell proliferation. I. Changes with time in the proportion of isolated, paried, and clustered labeled cells in sheets of murine epidermis. Virchows Arch B Cell Pathol Incl Mol Pathol. 1987;53:286–300.PubMedCrossRefGoogle Scholar
  16. 16.
    Kenyon KR, Tseng SCG. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989;96:709–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsai RJF, Tseng SCG. Human allograft limbal transplantation for corneal surface reconstruction. Cornea. 1994;13:389–400.PubMedCrossRefGoogle Scholar
  18. 18.
    Kwitko S, Raminho D, Barcaro S, et al. Allograft conjunctival transplantation for bilateral ocular surface disorders. Ophthalmology. 1995;102:1020–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Kenyon KR, Rapoza PA. Limbal allograft transplantation for ocular surface disorders. Ophthalmology. 1995;102(suppl):101–2.Google Scholar
  20. 20.
    Holland EJ, Schwartz OS. The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea. 1996;15:549–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Daya SM, Chan CC, Holland EJ. Cornea society nomenclature for ocular surface rehabilitative procedures. Cornea. 2011;30:1115–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Forbes J, Collin R, Dart J. Split thickness buccal mucous membrane grafts and beta irradiation in the treatment of recurrent pterygium. Br J Ophthalmol. 1998;82(12):1420–3.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Naumann GO, Lang GK, Rummelt V, Wigand ME. Autologous nasal mucosa transplantation in severe bilateral conjunctival mucus deficiency syndrome. Ophthalmology. 1990;97(8):1011–7.PubMedCrossRefGoogle Scholar
  24. 24.
    llen JH. The use of peritoneum as a substitute for conjunctiva in plastic surgery; a preliminary report. Am J Ophthalmol. 1953;36:1249–52.CrossRefGoogle Scholar
  25. 25.
    Harun MH, Sepian SN, Chua KH, Ropilah AR, Abd Ghafar N, Che-Hamzah J, Idrus RBH, Annuar FH. Human forniceal region is the stem cell-rich zone of the conjunctival epithelium. Hum Cell. 2013;26(1):35–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Daya SM, Ilari FA. Living related conjunctiva limbal allograft for the treatment of stem cell deficiency. Ophthalmology. 2001;108:126–33; discussion 133–134.PubMedCrossRefGoogle Scholar
  27. 27.
    Shaharuddin B, Ahmad S, Meeson A, Ali S. Concise review: immunological properties of ocular surface and importance of limbal stem cells for transplantation. Stem Cells Transl Med. 2013;2(8):614–24.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Qi X, Xie L, Cheng J, Zhai H, Zhou Q. Characteristics of immune rejection after allogeneic cultivated limbal epithelial transplantation. Ophthalmology. 2013;120(5):931–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee JS, Ha SW, Yu S, Lee GJ, Park YJ. Efficacy and safety of a large conjunctival autograft for recurrent pterygium. Korean J Ophthalmol. 2017;31(6):469–78.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kheirkhah A, Blanco G, Casas V, Hayashida Y, Raju VK, Tseng SC. Surgical strategies for fornix reconstruction based on symblepharon severity. Am J Ophthalmol. 2008;146(2):266–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Thakur S, Ichhpujani P, Kumar S. Grafts in glaucoma surgery: a review of the literature. Asia Pac J Ophthalmol (Phila). 2017;6(5):469–76.Google Scholar
  32. 32.
    Choi YJ, Kim IH, Choi JH, Lee MJ, Kim N, Choung HK, Khwarg SI. Early results of surgical management of conjunctival dermolipoma: partial excision and free conjunctival autograft. Br J Ophthalmol. 2015;99(8):1031–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Cheung AY, Sarnicola E, Holland EJ. Long-term ocular surface stability in conjunctival limbal autograft donor eyes. Cornea. 2017;36(9):1031–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Cheung AY, Govil A, Friedstrom SR, Holland EJ. Probable donor-derived cytomegalovirus disease after keratolimbal allograft transplantation. Cornea. 2017;36(8):1006–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Sepsakos L, Cheung AY, Nerad JA, Mogilishetty G, Holland EJ. Donor-derived conjunctival-limbal melanoma after a keratolimbal allograft. Cornea. 2017;36(11):1415–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Holland EJ, Mogilishetty G, Skeens HM, et al. Systemic immunosuppression in ocular surface stem cell transplantation: results of a 10-year experience. Cornea. 2012;31:655–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Miller AK, Young JW, Wilson DJ, Dunlap J, Chamberlain W. Transmission of donor-derived breast carcinoma as a recurrent mass in a keratolimbal allograft. Cornea. 2017;36(6):736–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Daya SM. Conjunctival-limbal autograft. Curr Opin Ophthalmol. 2017;28(4):370–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Chan CC, Biber JM, Holland EJ. The modified Cincinnati procedure: combined conjunctival limbal autografts and keratolimbal allografts for severe unilateral ocular surface failure. Cornea. 2012;31(11):1264–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Sangwan VS, Basu S, MacNeil S, Balasubramanian D. Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96(7):931–4.CrossRefGoogle Scholar
  41. 41.
    Miri A, Said DG, Dua HS. Donor site complications in autolimbal and living-related allolimbal transplantation. Ophthalmology. 2011;118(7):1265–71.PubMedGoogle Scholar
  42. 42.
    Busin M, Breda C, Bertolin M, Bovone C, Ponzin D, Ferrari S, Barbaro V, Elbadawy HM. Corneal epithelial stem cells repopulate the donor area within 1 year from limbus removal for limbal autograft. Ophthalmology. 2016;123(12):2481–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim EC, Jun AS, Kim MS, Jee D. Mooren ulcer occurring at donor site after contralateral conjunctivolimbal autograft for recurrent pterygium. Cornea. 2012;31(11):1357–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Basu S, Sureka SP, Shanbhag SS, Kethiri AR, Singh V, Sangwan VS. Simple limbal epithelial transplantation: long-term clinical outcomes in 125 cases of unilateral chronic ocular surface burns. Ophthalmology. 2016;123(5):1000–10.CrossRefGoogle Scholar
  45. 45.
    Sundmacher R, Reinhard T, Althaus C. Homologous central limbo-keratoplasty in limbus stem cell damage. Retrospective study of 3 years’ experience. Ophthalmologe. 1997;94(12):897–901.PubMedCrossRefGoogle Scholar
  46. 46.
    Lang SJ, Böhringer D, Reinhard T. Penetrating limbokeratoplasty for gelatinous corneal dystrophy. Klin Monatsbl Augenheilkd. 2017. [Epub ahead of print].Google Scholar
  47. 47.
    Kethiri AR, Basu S, Shukla S, Sangwan VS, Singh V. Optimizing the role of limbal explant size and source in determining the outcomes of limbal transplantation: an in vitro study. PLoS One. 2017;12(9):e0185623.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Krakauer M, Welder JD, Pandya HK, Nassiri N, Djalilian AR. Adverse effects of systemic immunosuppression in keratolimbal allograft. J Ophthalmol. 2012;2012:576712.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Eslani M, Haq Z, Movahedan A, Moss A, Baradaran-Rafii A, Mogilishetty G, Holland EJ, Djalilian AR. Late acute rejection after allograft limbal stem cell transplantation: evidence for long-term donor survival. Cornea. 2017;36(1):26–31.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pfau B, Kruse FE, Rohrschneider K, Zorn M, Fiehn W, Burk RO, Völcker HE. Comparison between local and systemic administration of cyclosporin A on the effective level in conjunctiva, aqueous humor and serum. Ophthalmologe. 1995;92(6):833–9.PubMedGoogle Scholar
  51. 51.
    Movahedan A, Cheung AY, Eslani M, Mogilishetty G, Govil A, Holland EJ. Long-term outcomes of ocular surface stem cell allograft transplantation. Am J Ophthalmol. 2017;184:97–107.PubMedCrossRefGoogle Scholar
  52. 52.
    Health Quality Ontario. Limbal stem cell transplantation: an evidence-based analysis. Ont Health Technol Assess Ser. 2008;8(7):1–58.Google Scholar
  53. 53.
    Titiyal JS, Sharma N, Agarwal AK, Prakash G, Tandon R, Vajpayee R. Live related versus cadaveric limbal allograft in limbal stem cell deficiency. Ocul Immunol Inflamm. 2015;23(3):232–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Nieto-Nicolau N, Martínez-Conesa EM, Casaroli-Marano RP. Limbal stem cells from aged donors are a suitable source for clinical application. Stem Cells Int. 2016;2016:3032128.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Li C, Dong N, Wu H, Dong F, Xu Y, Du H, He H, Liu Z, Li W. A novel method for preservation of human corneal limbal tissue. Invest Ophthalmol Vis Sci. 2013;54(6):4041–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Barbagli G, Balò S, Montorsi F, Sansalone S, Lazzeri M. History and evolution of the use of oral mucosa for urethral reconstruction. Asian J Urol. 2017;4(2):96–101.PubMedCrossRefGoogle Scholar
  57. 57.
    Prabhasawat P, Ekpo P, Uiprasertkul M, Chotikavanich S, Tesavibul N, Pornpanich K, Luemsamran P. Long-term result of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disease. Cell Tissue Bank. 2016;17(3):491–503.PubMedCrossRefGoogle Scholar
  58. 58.
    Kinoshita S, Koizumi N, Nakamura T. Transplantable cultivated mucosal epithelial sheet for ocular surface reconstruction. Exp Eye Res. 2004;78(3):483–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafael I. Barraquer
    • 1
    • 2
    • 3
  • Juan Alvarez de Toledo
    • 1
    • 3
  1. 1.Centro de Oftalmología Barraquer, Anterior Segment DepartmentBarcelonaSpain
  2. 2.Universitat Internacional de CatalunyaBarcelonaSpain
  3. 3.Institut Universitari Barraquer, Universitat Autónoma de BarcelonaBarcelonaSpain

Personalised recommendations