Advertisement

Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language Association

  • Dapeng Chen
  • Hongsheng Li
  • Xihui Liu
  • Yantao Shen
  • Jing Shao
  • Zejian Yuan
  • Xiaogang Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11220)

Abstract

Person re-identification is an important task that requires learning discriminative visual features for distinguishing different person identities. Diverse auxiliary information has been utilized to improve the visual feature learning. In this paper, we propose to exploit natural language description as additional training supervisions for effective visual features. Compared with other auxiliary information, language can describe a specific person from more compact and semantic visual aspects, thus is complementary to the pixel-level image data. Our method not only learns better global visual feature with the supervision of the overall description but also enforces semantic consistencies between local visual and linguistic features, which is achieved by building global and local image-language associations. The global image-language association is established according to the identity labels, while the local association is based upon the implicit correspondences between image regions and noun phrases. Extensive experiments demonstrate the effectiveness of employing language as training supervisions with the two association schemes. Our method achieves state-of-the-art performance without utilizing any auxiliary information during testing and shows better performance than other joint embedding methods for the image-language association.

Keywords

Person re-identification Local-global language association Image-text correspondence 

Notes

Acknowledgements

This work is supported by SenseTime Group Limited, the General Research Fund sponsored by the Research Grants Council of Hong Kong (Nos. CUHK14213616, CUHK14206114, CUHK14205615, CUHK14203015, CUHK14239816, CUHK419412, CUHK14207814, CUHK14208417, CUHK14202217), the Hong Kong Innovation and Technology Support Program (No.ITS/121/15FX).

References

  1. 1.
    Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: CVPR (2015)Google Scholar
  2. 2.
    Almazan, J., Gajic, B., Murray, N., Larlus, D.: Re-id done right: towards good practices for person re-identification. arXiv preprint arXiv:1801.05339 (2018)
  3. 3.
    Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. arXiv preprint arXiv:1707.07998 (2017)
  4. 4.
    Antol, S., et al.: Vqa: Visual question answering. In: ICCV (2015)Google Scholar
  5. 5.
    Bai, S., Bai, X., Tian, Q.: Scalable person re-identification on supervised smoothed manifold. In: CVPR (2017)Google Scholar
  6. 6.
    Bai, X., Yang, M., Huang, T., Dou, Z., Yu, R., Xu, Y.: Deep-person: Learning discriminative deep features for person re-identification. CoRR abs/ arXiv:1711.10658 (2017)
  7. 7.
    Barbosa, I.B., Cristani, M., Del Bue, A., Bazzani, L., Murino, V.: Re-identification with rgb-d sensors. In: ECCV (2012)Google Scholar
  8. 8.
    Chen, D., Xu, D., Li, H., Sebe, N., Wang, X.: Group consistent similarity learning via deep crf for person re-identification. In: CVPR (2018)Google Scholar
  9. 9.
    Chen, D., Yuan, Z., Chen, B., Zheng, N.: Similarity learning with spatial constraints for person re-identification. In: CVPR (2016)Google Scholar
  10. 10.
    Chen, D., Yuan, Z., Hua, G., Zheng, N., Wang, J.: Similarity learning on an explicit polynomial kernel feature map for person re-identification. In: CVPR (2015)Google Scholar
  11. 11.
    Chen, D., Yuan, Z., Wang, J., Chen, B., Hua, G., Zheng, N.: Exemplar-guided similarity learning on polynomial kernel feature map for person re-identification. Int. J. Comput. Vis. 123(3), 392–414 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: A deep quadruplet network for person re-identification. In: CVPR (2017)Google Scholar
  13. 13.
    Chen, X., Zitnick, C.L.: Mind’s eye: A recurrent visual representation for image caption generation. In: CVPR (2015)Google Scholar
  14. 14.
    Chen, Y.C., Zhu, X., Zheng, W.S., Lai, J.H.: Person re-identification by camera correlation aware feature augmentation. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 392–408 (2018)CrossRefGoogle Scholar
  15. 15.
    Chen, Y., Zhu, X., Gong, S.: Person re-identification by deep learning multi-scale representations. In: ICCVW (2017)Google Scholar
  16. 16.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)Google Scholar
  17. 17.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR (2010)Google Scholar
  18. 18.
    Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Mikolov, T., et al.: Devise: A deep visual-semantic embedding model. In: NIPS, pp. 2121–2129 (2013)Google Scholar
  19. 19.
    Johnson, J., Karpathy, A., Fei-Fei, L.: Densecap: Fully convolutional localization networks for dense captioning. In: CVPR (2016)Google Scholar
  20. 20.
    Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 39(4) (2017)Google Scholar
  21. 21.
    Karpathy, A., Joulin, A., Fei-Fei, L.: Deep fragment embeddings for bidirectional image sentence mapping. In: NIPS (2014)Google Scholar
  22. 22.
    Koestinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: CVPR, pp. 2288–2295 (2012)Google Scholar
  23. 23.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) NIPS (2012)Google Scholar
  24. 24.
    Li, D., Chen, X., Zhang, Z., Huang, K.: Learning deep context-aware features over body and latent parts for person re-identification. In: CVPR (2017)Google Scholar
  25. 25.
    Li, S., Xiao, T., Li, H., Yang, W., Wang, X.: Identity-aware textual-visual matching with latent co-attention. In: ICCV (2017)Google Scholar
  26. 26.
    Li, S., Xiao, T., Li, H., Zhou, B., Yue, D., Wang, X.: Person search with natural language description. In: CVPR (2017)Google Scholar
  27. 27.
    Li, W., Zhao, R., Wang, X.: Human reidentification with transferred metric learning. In: ACCV (2012)Google Scholar
  28. 28.
    Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: Deep filter pairing neural network for person re-identification. In: CVPR (2014)Google Scholar
  29. 29.
    Li, W., Zhu, X., Gong, S.: Person re-identification by deep joint learning of multi-loss classification. In: IJCAI (2017)Google Scholar
  30. 30.
    Li, Y., et al.: Visual question generation as dual task of visual question answering. In: CVPR (2018)Google Scholar
  31. 31.
    Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: CVPR (2015)Google Scholar
  32. 32.
    Lin, J., Ren, L., Lu, J., Feng, J., Zhou, J.: Consistent-aware deep learning for person re-identification in a camera network. In: CVPR (2017)Google Scholar
  33. 33.
    Lin, Y., Zheng, L., Zheng, Z., Wu, Y., Yang, Y.: Improving person re-identification by attribute and identity learning. CoRR abs/ arXiv:1703.07220 (2017)
  34. 34.
    Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal lstm with trust gates for 3d human action recognition. In: ECCV (2016)Google Scholar
  35. 35.
    Liu, X., Li, H., Shao, J., Chen, D., Wang, X.: Show, tell and discriminate: Image captioning by self-retrieval with partially labeled data. In: ECCV (2018)Google Scholar
  36. 36.
    Liu, X., et al.: Hydraplus-net: Attentive deep features for pedestrian analysis. In: ICCV (2017)Google Scholar
  37. 37.
    Ma, B., Su, Y., Jurie, F.: Bicov: a novel image representation for person re-identification and face verification. In: British Machive Vision Conference, pp. 11-pages (2012)Google Scholar
  38. 38.
    Mignon, A., Jurie, F.: Pcca: A new approach for distance learning from sparse pairwise constraints. In: CVPR. IEEE (2012)Google Scholar
  39. 39.
    Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
  40. 40.
    Qian, X., Fu, Y., Jiang, Y.G., Xiang, T., Xue, X.: Multi-scale deep learning architectures for person re-identification. In: ICCV (2017)Google Scholar
  41. 41.
    Reed, S., Akata, Z., Lee, H., Schiele, B.: Learning deep representations of fine-grained visual descriptions. In: CVPR (2016)Google Scholar
  42. 42.
    Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: ICML (2016)Google Scholar
  43. 43.
    Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence training for image captioning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  44. 44.
    Schumann, A., Stiefelhagen, R.: Person re-identification by deep learning attribute-complementary information. In: CVPRW (2017)Google Scholar
  45. 45.
    Shen, Y., Li, H., Xiao, T., Yi, S., Chen, D., Wang, X.: Deep group-shuffling random walk for person re-identification. In: CVPR (2018)Google Scholar
  46. 46.
    Shen, Y., Xiao, T., Li, H., Yi, S., Wang, X.: End-to-end deep kronecker-product matching for person re-identification. In: CVPR (2018)Google Scholar
  47. 47.
    Su, C., Li, J., Zhang, S., Xing, J., Gao, W., Tian, Q.: Pose-driven deep convolutional model for person re-identification. In: ICCV (2017)Google Scholar
  48. 48.
    Su, C., Zhang, S., Xing, J., Gao, W., Tian, Q.: Deep attributes driven multi-camera person re-identification. In: ECCV (2016)Google Scholar
  49. 49.
    Sun, Y., Zheng, L., Deng, W., Wang, S.: Svdnet for pedestrian retrieval. In: ICCV (2017)Google Scholar
  50. 50.
    Varior, R.R., Haloi, M., Wang, G.: Gated siamese convolutional neural network architecture for human re-identification. In: ECCV (2016)Google Scholar
  51. 51.
    Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: A neural image caption generator. In: CVPR. IEEE (2015)Google Scholar
  52. 52.
    Wang, F., Zuo, W., Lin, L., Zhang, D., Zhang, L.: Joint learning of single-image and cross-image representations for person re-identification. In: CVPR (2016)Google Scholar
  53. 53.
    Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.: Shape and appearance context modeling. In: ICCV (2007)Google Scholar
  54. 54.
    Wu, A., Zheng, W.S., Yu, H.X., Gong, S., Lai, J.: Rgb-infrared cross-modality person re-identification. In: ICCV (2017)Google Scholar
  55. 55.
    Xiao, T., Li, H., Ouyang, W., Wang, X.: Learning deep feature representations with domain guided dropout for person re-identification. In: CVPR (2016)Google Scholar
  56. 56.
    Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: End-to-end deep learning for person search. CoRR abs/ arXiv:1604.01850 (2016)
  57. 57.
    Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual attention. In: ICML, pp. 2048–2057 (2015)Google Scholar
  58. 58.
    Zhang, L., Xiang, T., Gong, S.: Learning a discriminative null space for person re-identification. In: CVPR (2016)Google Scholar
  59. 59.
    Zhao, H., et al.: Spindle net: Person re-identification with human body region guided feature decomposition and fusion. In: CVPR (2017)Google Scholar
  60. 60.
    Zhao, L., Li, X., Zhuang, Y., Wang, J.: Deeply-learned part-aligned representations for person re-identification. In: ICCV (2017)Google Scholar
  61. 61.
    Zheng, L., Huang, Y., Lu, H., Yang, Y.: Pose invariant embedding for deep person re-identification. CoRR abs/ arXiv:1701.07732 (2017)
  62. 62.
    Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: A benchmark. In: ICCV (2015)Google Scholar
  63. 63.
    Zheng, Z., Zheng, L., Garrett, M., Yang, Y., Shen, Y.: Dual-path convolutional image-text embedding. CoRR abs/ arXiv:1711.05535 (2017). http://arxiv.org/abs/1711.05535
  64. 64.
    Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In: ICCV (2017)Google Scholar
  65. 65.
    Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: CVPR (2017)Google Scholar
  66. 66.
    Zhou, J., Yu, P., Tang, W., Wu, Y.: Efficient online local metric adaptation via negative samples for person re-identification. In: ICCV (2017)Google Scholar
  67. 67.
    Zhou, S., Wang, J., Wang, J., Gong, Y., Zheng, N.: Point to set similarity based deep feature learning for person re-identification. In: CVPR (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.CUHK-SenseTime Joint LabThe Chinese University of Hong KongHong KongChina
  2. 2.SenseTime ResearchHong KongChina
  3. 3.Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations