Advertisement

Variable Ring Light Imaging: Capturing Transient Subsurface Scattering with an Ordinary Camera

  • Ko NishinoEmail author
  • Art Subpa-asa
  • Yuta Asano
  • Mihoko Shimano
  • Imari Sato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11215)

Abstract

Subsurface scattering plays a significant role in determining the appearance of real-world surfaces. A light ray penetrating into the subsurface is repeatedly scattered and absorbed by particles along its path before reemerging from the outer interface, which determines its spectral radiance. We introduce a novel imaging method that enables the decomposition of the appearance of a fronto-parallel real-world surface into images of light with bounded path lengths, i.e., transient subsurface light transport. Our key idea is to observe each surface point under a variable ring light: a circular illumination pattern of increasingly larger radius centered on it. We show that the path length of light captured in each of these observations is naturally lower-bounded by the ring light radius. By taking the difference of ring light images of incrementally larger radii, we compute transient images that encode light with bounded path lengths. Experimental results on synthetic and complex real-world surfaces demonstrate that the recovered transient images reveal the subsurface structure of general translucent inhomogeneous surfaces. We further show that their differences reveal the surface colors at different surface depths. The proposed method is the first to enable the unveiling of dense and continuous subsurface structures from steady-state external appearance using ordinary camera and illumination.

Notes

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Numbers JP15K21742, JP15H05918, and JP17K20143.

Supplementary material

Supplementary material 1 (mp4 75467 KB)

474198_1_En_37_MOESM2_ESM.pdf (8.2 mb)
Supplementary material 2 (pdf 8428 KB)

References

  1. 1.
    Bai, J., Chandraker, M., Ng, T.-T., Ramamoorthi, R.: A dual theory of inverse and forward light transport. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 294–307. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15552-9_22CrossRefGoogle Scholar
  2. 2.
    Gu, J., Kobayashi, T., Gupta, M., Nayar, S.K.: Multiplexed illumination for scene recovery in the presence of global illumination. In: IEEE International Conference on Computer Vision (2011)Google Scholar
  3. 3.
    Heide, F., Hullin, M.B., Gregson, J., Heidrich, W.: Low-budget transient imaging using photonic mixer devices. ACM Trans. Graph. 32(4), 45:1–45:10 (2013)zbMATHGoogle Scholar
  4. 4.
    Jakob, W.: Mitsuba: Physically based renderer 0.5.0 (2014). http://www.mitsuba-renderer.org/
  5. 5.
    Jarabo, A., Masia, B., Marco, J., Gutierrez, D.: Recent advances in transient imaging: a computer graphics and vision perspective. Vis. Inform. 1(1), 65–79 (2017)CrossRefGoogle Scholar
  6. 6.
    Li, D., Nair, A.S., Nayar, S.K., Zheng, C.: AirCode: unobtrusive physical Tags for Digital Fabrication. In: ACM Symposium on User Interface Software and Technology (2017)Google Scholar
  7. 7.
    Mukaigawa, Y., Yagi, Y., Raskar, R.: Analysis of light transport in scattering media. In: IEEE Computer Vision and Pattern Recognition (2010)Google Scholar
  8. 8.
    Narasimhan, S., Nayar, S.: Shedding light on the weather. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 665–672 (2003)Google Scholar
  9. 9.
    Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25(3), 935–944 (2006)CrossRefGoogle Scholar
  10. 10.
    O’Toole, M., Achar, S., Narasimhan, S.G., Kutulakos, K.N.: Homogeneous codes for energy-efficient illumination and imaging. ACM Trans. Graph. (SIGGRAPH) 34(4), 35:1–35:13 (2015)CrossRefGoogle Scholar
  11. 11.
    O’Toole, M., Heide, F., Xiao, L., Hullin, M.B., Heidrich, W., Kutulakos, K.N.: Temporal frequency probing for 5D transient analysis of global light transport. ACM Trans. Graph. 33(4), 87:1–87:11 (2014)zbMATHGoogle Scholar
  12. 12.
    O’Toole, M., Mather, J., Kutulakos, K.N.: 3D shape and indirect appearance by structured light transport. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)Google Scholar
  13. 13.
    O’Toole, M., Mather, J., Kutulakos, K.N.: 3D shape and indirect appearance by structured light transport. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1298–1312 (2016)CrossRefGoogle Scholar
  14. 14.
    O’Toole, M., Raskar, R., Kutulakos, K.N.: Primal-dual coding to probe light transport. ACM Trans. Graph. (SIGGRAPH) (2012)Google Scholar
  15. 15.
    Reddy, D., Ramamoorthi, R., Curless, B.: Frequency-space decomposition and acquisition of light transport under spatially varying illumination. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 596–610. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33783-3_43CrossRefGoogle Scholar
  16. 16.
    Redo-Sanchez, A., et al.: Terahertz time-gated spectral imaging for content extraction through layered structures. Nature Communi. (2016)Google Scholar
  17. 17.
    Seitz, S.M., Matsushita, Y., Kutulakos, K.N.: A theory of inverse light transport. In: IEEE International Conference on Computer Vision (2005)Google Scholar
  18. 18.
    Subpa-asa, A., Fu, Y., Zheng, Y., Amano, T., Sato, I.: Direct and global component separation from a single image using basis representation. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 99–114. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54187-7_7CrossRefGoogle Scholar
  19. 19.
    Tanaka, K., Mukaigawa, Y., Kubo, H., Matsushita, Y., Yagi, Y.: Recovering inner slices of layered translucent objects by multi-frequency illumination. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 746–757 (2017)CrossRefGoogle Scholar
  20. 20.
    Velten, A., et al.: Femto-photography: capturing and visualizing the propagation of light. ACM Trans. Graph. 32(4), 44:1–44:8 (2013)CrossRefGoogle Scholar
  21. 21.
    Wu, D., et al.: Decomposing global light transport using time of flight imaging. Int. J. Comput. Vis. 107, 123–138 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ko Nishino
    • 1
    • 3
    Email author
  • Art Subpa-asa
    • 2
  • Yuta Asano
    • 2
  • Mihoko Shimano
    • 3
  • Imari Sato
    • 3
  1. 1.Kyoto UniversityKyotoJapan
  2. 2.Tokyo Institute of TechnologyTokyoJapan
  3. 3.National Institute of InformaticsTokyoJapan

Personalised recommendations