Structuring and Restructuring

  • Octavian IordacheEmail author
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)


Beyond molecular chemistry based on the covalent bond, supramolecular chemistry aims at developing highly complex chemical systems from components interacting through non-covalent intermolecular forces. It is a major field of investigation and has rooted numerous developments at its interfaces with biology and physics. High-dimensional supramolecular systems have been proposed here. The model of hypercycles systems of mutually autocatalytic components is of interest for living and like-alive systems development. One way to study the diverse nucleotide sequences in the genes is to map them into a multidimensional matrix called a sequence space. Each high-dimensional space is built iteratively by drawing the previous diagrams twice and connecting the corresponding points. Doubling and contracting method is examined. Target-oriented and diversity-oriented syntheses are presented.


  1. Anoh, V., Agbo, S., Swande, P.: Exploring the benefit of diversity oriented synthesis (DOS) vis-à-vis other synthetic tools–a review. Chem. Sci. Rev. Lett. 4(16), 1148–1152 (2015)Google Scholar
  2. Ariga, K., Kunitake., T.: Supramolecular Chemistry—Fundamentals and Applications. Springer, Heidelberg (2006)Google Scholar
  3. Berl, V., Krische, M., Huc, I., Schmutz, M., Lehn, J.-M.: Template-Induced and molecular recognition-directed hierarchical generation of supramolecular assemblies from molecular strands. Chem. Eur. J. 6(11), 1938–1946 (2000)CrossRefGoogle Scholar
  4. Burke, M.D., Schreiber, S.L.: A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. 43(1), 46–58 (2004)CrossRefGoogle Scholar
  5. Caspard, N., Conte, Le, de Poly-Barbut, C., Morvan, M.: Cayley lattices of finite Coxeter groups are bounded. Adv. in Appl. Math. 33(1), 71–94 (2004)MathSciNetCrossRefGoogle Scholar
  6. Chung, M.-K., White, P.S., Lee, S.J., Gagné, M.R.: Synthesis of Interlocked 56-membered rings by dynamic self-templating. Angew. Chem. Int. Ed. 2009(48), 8683–8686 (2009)CrossRefGoogle Scholar
  7. Day, A.: A simple solution to the word problem for lattices. Canad. Math. Bull. 13, 253–254 (1970)MathSciNetCrossRefGoogle Scholar
  8. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10), 465–523 (1971)CrossRefGoogle Scholar
  9. Eigen, M.: Viral quasispecies. Sci. Am. 269, 42–49 (1993)CrossRefGoogle Scholar
  10. Eigen, M.: Viruses: evolution, propagation and defense. Nutr. Rev. 58(2), 5–16 (2000)Google Scholar
  11. Eigen, M., Schuster, P.: The Hypercycle a Principle of Natural Self-organization. Springer, Berlin (1979)Google Scholar
  12. Eigen, M., McCaskill, J., Schuster, P.: Molecular quasispecies. J. Phys. Chem. 92, 6881–6891 (1988)CrossRefGoogle Scholar
  13. Hasenknopf, B., Lehn, J.-M., Kneisel, B.O., Baum, G., Fenske, D.: Self-assembly of a circular double helicate. Angew. Chem. Int. Ed. Engl. 35(1), 838–1840 (1996)Google Scholar
  14. Hasenknopf, B., Lehn, J.M., Boumediene, N., Dupont-Gervais, A., Van Dorsselaer, A., Kneisel, B., Fenske, D.: Self-assembly of tetra- and hexanuclear circular helicates. Am. Chem. Soc. 119, 10956–10962 (1997)CrossRefGoogle Scholar
  15. Hunt, R.A.R., Ludlow, R.F., Otto, S.: Estimating equilibrium constants for aggregation from the product distribution of a dynamic combinatorial library. Org. Lett. 11(22), 5110–5113 (2009)CrossRefGoogle Scholar
  16. Hunt, R.A.R., Otto, S.: Dynamic combinatorial libraries: new opportunities in systems chemistry. Chem. Commun. 47, 847–858 (2011)CrossRefGoogle Scholar
  17. Iordache, O.: Polytope Projects. Taylor & Francis CRC Press, Boca Raton, FL (2013)CrossRefGoogle Scholar
  18. Kuhn, H., Kuhn, C.: Diversified world: drive of life’s origin? Angew. Chem. Int. 42, 262–266 (2003)CrossRefGoogle Scholar
  19. Kuhn, H., Waser, J.: Hypothesis on the origin of genetic code. FEBS Lett. 352, 259–264 (1994)CrossRefGoogle Scholar
  20. Lao, L.L., Schmitt, J.-L., Lehn, J.-M.: Evolution of a constitutional dynamic library driven by self-organization of a helically folded molecular strand. Chem. Eur. J. 16, 4903–4910 (2010)CrossRefGoogle Scholar
  21. Lehn, J.-M.: Supramolecular Chemistry: concepts and perspectives. Wiley-VCH, Weinheim (1995)CrossRefGoogle Scholar
  22. Lehn, J.-M.: Dynamic combinatorial and virtual combinatorial libraries. Eur. J. Chem. 5(9), 2455–2463 (1999)CrossRefGoogle Scholar
  23. Lehn, J.-M.: Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. U.S.A. 99, 4763–4768 (2002)CrossRefGoogle Scholar
  24. Lehn, J.-M.: Supramolecular chemistry: from molecular information towards self-organization and complex matter. Rep. Prog. Phys. 67, 249–265 (2004)CrossRefGoogle Scholar
  25. Li, J., Carnall, J.M.A., Stuart, M.C.A., Otto, S.: Hydrogel formation upon photoinduced covalent capture of macrocycle stacks from dynamic combinatorial libraries. Angew. Chem. Int. Ed. 50(36), 8384–8386 (2011)CrossRefGoogle Scholar
  26. Otto, S.: Dynamic combinatorial chemistry: a new method for the selection and preparation of synthetic receptors. Curr. Opin. Drug Discov. Dev. 6, 509–520 (2003)Google Scholar
  27. Petitjean, A., Cuccia, L.A., Lehn, J.-M., Nierengartenm, H., Schmutz, M.: Cation-promoted hierarchical formation of supramolecular assemblies of self-organized helical molecular components. Angew. Chem. 41(7), 1195–1198 (2002)CrossRefGoogle Scholar
  28. Spring, R.: Diversity-oriented synthesis; a challenge for synthetic chemists. Org. Biomol. Chem. 1(22), 3867–3870 (2003)CrossRefGoogle Scholar
  29. Stanley, R.P.: Differential posets. J. Amer. Math. Soc. 1, 919–961 (1988)MathSciNetCrossRefGoogle Scholar
  30. Stanley, R.P.: Variations on differential posets. In: Invariant Theory and Tableaux. IMA Vol. Math. Appl. 19, pp 145–165. Springer, New York (1990)Google Scholar
  31. Swiegers, G.F., Malefetse, T.J.: Classification of coordination polygons and polyhedra according to their mode of self-assembly. 2, Review of the literature. Coord. Chem. Rev. 225(1–2), 91–121 (2002)CrossRefGoogle Scholar
  32. Symes, M.D., Kitson, P.J., Yan, J., Richmond, C.J., Cooper, G.J., Bowman, R.W., Vilbrandt, T., Cronin, L.: Integrated 3D-printed reactionware for chemical synthesis and analysis. Nature Chemistry. 4(5), 349–354 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.PolystochasticMontrealCanada

Personalised recommendations