Advertisement

Can Engineering Principles Help Us Understand Nervous System Robustness?

  • Timothy O’Leary
Chapter
Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL, volume 23)

Abstract

Nervous systems are formidably complex networks of nonlinear interacting components that self organise and continually adapt to enable flexible behaviour. Robust and reliable function is therefore non-trivial to achieve and requires a number of dynamic mechanisms and design principles that are the subject of current research in neuroscience. A striking feature of these principles is that they resemble engineering solutions, albeit at a greater level of complexity and layered organisation than any artificial system. I will draw on these observations to argue that biological robustness in the nervous system remains a deep scientific puzzle, but not one that demands radically new concepts.

Keywords

Neurons Feedback loops Degeneracy Control theory Stability Regulation Homeostasis 

Notes

Acknowledgements

I acknowledge support from ERC-StG grant 716643 FLEXNEURO.

References

  1. Abbott, L., & LeMasson, G. (1993). Analysis of neuron models with dynamically regulated conductances. Neural Computation, 5, 823–842.CrossRefGoogle Scholar
  2. Banker, G. A., & Cowan, W. M. (1977). Rat hippocampal neurons in dispersed cell culture. Brain Research, 126, 397–342.CrossRefGoogle Scholar
  3. Banker, G. A., & Cowan, W. M. (1979). Further observations on hippocampal neurons in dispersed cell culture. The Journal of Comparative Neurology, 187, 469–493.CrossRefGoogle Scholar
  4. Bekkers, J. M., & Stevens, C. F. (1991). Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proceedings of the National Academy of Sciences of the United States of America, 88, 7834–7838.CrossRefGoogle Scholar
  5. Carlson, J. M., & Doyle, J. (2000). Highly optimized tolerance: Robustness and design in complex systems. Physical Review Letters, 84, 2529–2532.CrossRefGoogle Scholar
  6. Conant, R. C., & Ross Ashby, W. (1970). Every good regulator of a system must be a model of that system. International Journal of Systems Science, 1, 89–97.CrossRefGoogle Scholar
  7. Csete, M. E., & Doyle, J. C. (2002). Reverse engineering of biological complexity. Science, 295, 1664–1669.CrossRefGoogle Scholar
  8. Davis, G. W. (2006). Homeostatic control of neural activity: From phenomenology to molecular design. Annual Review of Neuroscience, 29, 307–323.CrossRefGoogle Scholar
  9. Davis, G. W., & Bezprozvanny, I. (2001). Maintaining the stability of neural function: A homeostatic hypothesis. Annual Review of Physiology, 63, 847–869.CrossRefGoogle Scholar
  10. Desai, N. S. (2003). Homeostatic plasticity in the CNS: Synaptic and intrinsic forms. Journal of Physiology, Paris, 97, 391–402.CrossRefGoogle Scholar
  11. Desai, N. S., Rutherford, L. C., & Turrigiano, G. G. (1999). Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neuroscience, 2, 515–520.CrossRefGoogle Scholar
  12. Drion, G., O’Leary, T., & Marder, E. (2015). Ion channel degeneracy enables robust and tunable neuronal firing rates. Proceedings of the National Academy of Sciences of the United States of America, 112, E5361–E5370.CrossRefGoogle Scholar
  13. Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 98, 13763–13768.CrossRefGoogle Scholar
  14. Grubb, M. S., & Burrone, J. (2010). Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature, 465, 1070–U1131.CrossRefGoogle Scholar
  15. Harnack, D., Pelko, M., Chaillet, A., Chitour, Y., & van Rossum, M. C. (2015). Stability of neuronal networks with homeostatic regulation. PLoS Computational Biology, 11, e1004357.CrossRefGoogle Scholar
  16. Hengen, K. B., Lambo, M. E., Van Hooser, S. D., Katz, D. B., & Turrigiano, G. G. (2013). Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron, 80, 335–342.CrossRefGoogle Scholar
  17. Hodgkin, A. L., & Huxley, A. F. (1952a). The components of membrane conductance in the giant axon of Loligo. The Journal of Physiology, 116, 473–496.CrossRefGoogle Scholar
  18. Hodgkin, A. L., & Huxley, A. F. (1952b). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. The Journal of Physiology, 116, 449–472.CrossRefGoogle Scholar
  19. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. In Proceedings of the National Academy of Sciences (Vol. 79, pp. 2554–2558).Google Scholar
  20. Maffei, A., & Turrigiano, G. G. (2008). Multiple modes of network homeostasis in visual cortical layer 2/3. The Journal of Neuroscience, 28, 4377–4384.CrossRefGoogle Scholar
  21. Marder, E., & Goaillard, J. M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews, 7, 563–574.CrossRefGoogle Scholar
  22. O’Leary, T., & Wyllie, D. J. A. (2011). Neuronal homeostasis: Time for a change? The Journal of Physiology, 589, 4811–4826.CrossRefGoogle Scholar
  23. O’Leary, T., van Rossum, M. C. W., & Wyllie, D. J. A. (2010). Homeostasis of intrinsic excitability in hippocampal neurones: Dynamics and mechanism of the response to chronic depolarization. The Journal of Physiology, 588, 157–170.CrossRefGoogle Scholar
  24. O’Leary, T., Williams, A. H., Franci, A., & Marder, E. (2014). Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron, 82, 809–821.CrossRefGoogle Scholar
  25. Turrigiano, G. (2007). Homeostatic signaling: The positive side of negative feedback. Current Opinion in Neurobiology, 17, 318–324.CrossRefGoogle Scholar
  26. Turrigiano, G., Abbott, L. F., & Marder, E. (1994). Activity-dependent changes in the intrinsic properties of cultured neurons. Science, 264, 974–977.CrossRefGoogle Scholar
  27. Turrigiano, G., LeMasson, G., & Marder, E. (1995). Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. The Journal of Neuroscience, 15, 3640–3652.CrossRefGoogle Scholar
  28. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 391, 892–896.CrossRefGoogle Scholar
  29. Wheeler, D. G., Groth, R. D., Ma, H., Barrett, C. F., Owen, S. F., Safa, P., & Tsien, R. W. (2012). Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell, 149, 1112–1124.CrossRefGoogle Scholar
  30. Willems, J. C. (2007). The behavioral approach to open and interconnected systems. IEEE Control Systems, 27, 46–99.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of CambridgeCambridgeUK

Personalised recommendations