Advertisement

Robustness, Mechanism, and the Counterfactual Attribution of Goals in Biology

  • Marco BuzzoniEmail author
Chapter
Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL, volume 23)

Abstract

The first part of this paper discusses two important meanings of robustness (robustness as stability as against variations in parameter values and robustness as consilience of results from different sources of evidence) and shows their essential connection with the notion of intersubjective reproducibility. As I shall maintain, robustness in both senses of the term is intimately connected with the notion of scientific experiment. This is the important element of truth of the mechanistic systems approach, which explains events as products of robust and regular systems and processes. In the second part of this paper I shall show that the concept of robustness of a mechanism, if applied to biological systems, is one-sided and incomplete without a heuristic˗methodical reference to final causes, even though the assumption of the teleological point of view is justified in biology only to the extent that we use it as a counterfactual artifice, capable of bringing to light causal relations which have a robustly reproducible content. In this way, the reflexive, typically human concept of purposefulness may be employed to investigate living beings scientifically, that is, in an intersubjectively testable and reproducible way, to discover mechanisms in living systems which are robust in both senses of the word.

Keywords

Counterfactual attribution of goals in biology Experiment Intersubjective reproducibility Robustness-as-consilience Robustness-as-stability Teleology 

Notes

Acknowledgements

I presented an earlier version of this paper at the “Interdisciplinary Workshop on Robustness – Engineering Science” (Rome, February 5th – 6th, 2015). Thanks to all those who contributed to the discussion of the paper during and after the conference. Italian Ministry for Scientific Research (MIUR) provided funds for this research (PRIN 2012).

References

  1. Alessandrini, A., Gavazzo, P., Picco, C., & Facci, P. (2008). Voltage–induced morphological modifications in oocyte membranes containing exogenous K channels studied by electrochemical scanning force microscopy. Microscopy Research and Technique, 71, 274–278.CrossRefGoogle Scholar
  2. Alon, U., Surette, M. G., Barkai, N., & Leibler, S. (1999). Robustness in bacterial chemotaxis. Nature, 397, 168–171.CrossRefGoogle Scholar
  3. Barkai, N., & Leibler, S. (1997). Robustness in simple biochemical networks. Nature, 387, 913–917.CrossRefGoogle Scholar
  4. Beckner, M. (1959). The biological way of thought. New York: Columbia University Press.Google Scholar
  5. Beckner, M. (1969). Function and teleology. Journal of History of Biology, 2, 151–164.CrossRefGoogle Scholar
  6. Bernard, C. (1857). Leçons sur les effets des substances toxiques et médicamenteuses. Paris: Baillière.CrossRefGoogle Scholar
  7. Bernard, C. (1878). La science expérimentale. Paris: Baillière.Google Scholar
  8. Box, G. (1953). Non-normality and tests on variances. Biometrika, 40, 318–335.CrossRefGoogle Scholar
  9. Bridgman, P. W. (1927). The logic of modern physics. New York: Macmillan.Google Scholar
  10. Buzzoni, M. (2008). Thought experiment in the natural sciences. Würzburg: Königshausen+Neumann.Google Scholar
  11. Buzzoni, M. (2015). Causality, teleology, and thought experiments in biology. Journal for General Philosophy of Science, 46, 279–299.CrossRefGoogle Scholar
  12. Buzzoni, M. (2016). Mechanisms, experiments, and theory-ladenness: A realist–perspectivalist view. Epistemologia. Special Issue of Axiomathes, 26, 411–427.CrossRefGoogle Scholar
  13. Buzzoni, M. (2017). Robustness, intersubjective reproducibility, and scientific realism. In E. Agazzi (Ed.), Scientific realism (pp. 133–150). Berlin/Heidelberg/New York: Springer.CrossRefGoogle Scholar
  14. Calcott, B. (2010). Wimsatt and the robustness family: Review of Wimsatt’s re-engineering philosophy for limited beings. Biology and Philosophy, 26, 281–293.CrossRefGoogle Scholar
  15. Cartwright, N. (1983). How the laws of physics lie. Oxford: Clarendon.CrossRefGoogle Scholar
  16. Christie, J. M., & Murphy, A. S. (2013). Shoot phototropism in higher plants: New light through old concepts. American Journal of Botany, 100(1), 35–46.CrossRefGoogle Scholar
  17. Clausing, D. P. (2004). Operating window: An engineering measure for robustness. Technometrics, 46, 25–29.CrossRefGoogle Scholar
  18. Craver, C. F. (2007). Explaining the brain. Mechanisms and the mosaic unity of neuroscience. New York: Oxford University Press.CrossRefGoogle Scholar
  19. Craver, C. F. (2013). Functions and mechanisms: A perspectivalist view in. In P. Huneman (Ed.), Functions: Selection and mechanisms (pp. 133–158). Berlin: Springer.CrossRefGoogle Scholar
  20. Craver, C. F., & Bechtel, W. (2007). Top-down causation without top-down causes. Biology and Philosophy, 22, 547–563.CrossRefGoogle Scholar
  21. Crowe, J. H., & Crowe, L. M. (2000). Preservation of mammalian cells-learning nature’s tricks. Nature Biotechnology, 18, 145–146.CrossRefGoogle Scholar
  22. Darwin, C. (1888). The power of movement in plants. London: John Murray.Google Scholar
  23. De Raedt, H., Katsnelson, M. I., & Michielsen, K. (2014). Quantum theory as the most robust description of reproducible experiments. Annals of Physics, 347, 45–73.CrossRefGoogle Scholar
  24. Eigen, M. (1993). Viral quasispecies. Scientific American, 269, 42–49.CrossRefGoogle Scholar
  25. Fankhauser, C., & Christie, J. M. (2015). Plant phototropic growth. Current Biology, 25(9), R384–R389.CrossRefGoogle Scholar
  26. Félix, M. A., & Barkoulas, M. (2015). Pervasive robustness in biological systems. Nature Reviews Genetics, 16(8), 483–496.CrossRefGoogle Scholar
  27. Glennan, S. (2010). Ephemeral mechanisms and historical explanation. Erkenntnis, 72, 251–266.CrossRefGoogle Scholar
  28. Grmek, M. D. (1966). Notes inédites de Claude Bernard sur les propriétés physiologiques des poisons de flèches (curare, upas, strychnine et autres). Biologie Médicale, 55, hors série.Google Scholar
  29. Hudson, R. (2014). Seeing things: The philosophy of reliable observation. Oxford/New York: Oxford University Press.Google Scholar
  30. Jacobi, F. H. (1815). Werke, II. Leipzig: Fleischer.Google Scholar
  31. Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5, 826–837.CrossRefGoogle Scholar
  32. Kitano, H. (2007). Towards a theory of biological robustness. Molecular Systems Biology, 3, 1–7.CrossRefGoogle Scholar
  33. Kitano, H., Oda, K., Kimura, T., Matsuoka, Y., Csete, M., Doyle, J., & Muramatsu, M. (2004). Metabolic syndrome and robustness tradeoffs. Diabetes, 53(Suppl 3), S6–S15.CrossRefGoogle Scholar
  34. Lander, A. D. (2004). A calculus of purpose. PLoS Biology, 2(6), 0712–0714.CrossRefGoogle Scholar
  35. Lee, S. Y., Lee, A., Chen, J. Y., & MacKinnon, R. (2005). Structure of the KvAP voltage-dependent K channel and its dependence on the lipid membrane. Proceedings of the National Academy of Sciences USA, 102, 15441–15446.CrossRefGoogle Scholar
  36. Levins, R. (1966). The strategy of model-building in population biology. American Scientist, 54, 421–431.Google Scholar
  37. Levins, R. (1993). A response to Orzack and Sober: Formal analysis and the fluidity of science. The Quarterly Review of Biology, 68, 547–555.CrossRefGoogle Scholar
  38. Lorenz, K. (1941/1942). Kants Lehre vom Apriorischen im Lichte gegenwärtiger Biologie. Blätter für deutsche Philosophie, 15, 94–125.Google Scholar
  39. Mach, E. (1906[1976]). Erkenntnis und Irrtum. Leipzig, Barth, 2th edition. English (trans: McCormack, T.J.) Knowledge and error. Dordrecht/Boston: Reidel.Google Scholar
  40. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.CrossRefGoogle Scholar
  41. Mayr, E. (1988). Toward a new philosophy of biology: Observations of an evolutionist. Cambridge: Harvard University Press.Google Scholar
  42. Mitchell, S. D. (2008). Exporting causal knowledge in evolutionary and developmental biology. Philosophy of Science, 75, 697–706.CrossRefGoogle Scholar
  43. Pâslaru, V. (2009). Ecological explanation between manipulation and mechanism description. Philosophy of Science, 76, 821–837.CrossRefGoogle Scholar
  44. Perrin, J. (1916). Atoms. (D. L. Hammick, Trans.). New York: Van Nostrand.Google Scholar
  45. Popper, K. R. (1959[2002]). The logic of scientific discovery. London: Hutchinson (quotations are from the 2002 edition, London: Routledge).Google Scholar
  46. Psillos, S. (2011). Moving molecules above the scientific horizon: On Perrin’s case for realism. Journal for General Philosophy of Science, 42, 339–363.CrossRefGoogle Scholar
  47. Roll-Hansen, N. (1976). Critical teleology: Immanuel Kant and Claude Bernard on the limitations of experimental biology. Journal of the History of Biology, 9, 59–91.CrossRefGoogle Scholar
  48. Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. Philosophy of Science, 10, 18–24.CrossRefGoogle Scholar
  49. Salmon, W. C. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.Google Scholar
  50. Scheffer, I. (1959). Thoughts on teleology. The British Journal for the Philosophy of Science, 9, 265–284.CrossRefGoogle Scholar
  51. Schmidt, D., Qiu-Xing, J., & MacKinnon, R. (2006). Phospholipids and the origin of cationic gating charges in voltage sensors. Nature, 444(7), 775–779.CrossRefGoogle Scholar
  52. Simon, H. E. (1996[1962]). The sciences of the artificial (3rd ed.). London/Cambridge, MA: MIT Press.Google Scholar
  53. Singer, M. A., & Lindquist, S. (1998). Thermotolerance in Saccharomyces cerevisiae: The Yin and Yang of trehalose. Trends in Biotechnology, 16, 460–468.CrossRefGoogle Scholar
  54. Stegenga, J. (2009). Robustness, discordance, and relevance. Philosophy of Science, 76, 650–661.CrossRefGoogle Scholar
  55. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., 3rd, & Doyle, J. (2004). Robustness of cellular functions. Cell, 118, 675–685.CrossRefGoogle Scholar
  56. Strand, A., & Oftedal, G. (2009). Functional stability and systems level causation. Philosophy of Science, 76, 809–820.CrossRefGoogle Scholar
  57. Tabery, J. G. (2004). Synthesizing activities and interactions in the concept of a mechanism. Philosophy of Science, 71, 1–15.CrossRefGoogle Scholar
  58. Thorén, H. (2014). Resilience as a unifying concept. International Studies in the Philosophy of Science, 28, 303–324.CrossRefGoogle Scholar
  59. von Dassow, G., Meir, E., Munro, E. M., & Odell, G. M. (2000). The segment polarity network is a robust developmental module. Nature, 406, 188–192.CrossRefGoogle Scholar
  60. Wang, J. M., Roh, S. H., Sunghwan, K., Lee, C. W., Jae, I. K., & Swartz, K. J. (2004). Molecular surface of tarantula toxins interacting with voltage sensors in K channels. Journal of General Physiology, 123, 455–467.CrossRefGoogle Scholar
  61. Whewell, W. (1840[1847]). The philosophy of the inductive sciences. Founded upon their History (1st ed., London: 1840; 2nd ed., London: 1847). Quotations are from the second edition.Google Scholar
  62. Wilke, C. O. (2006). Robustness and evolvability in living systems. Bioscience, 56, 695–696.CrossRefGoogle Scholar
  63. Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Cambridge: Harvard University Press.Google Scholar
  64. Wimsatt, W. C. (2012). “Robustness: Material, and inferential, in the natural and human sciences”. In Soler et al., Characterizing the robustness of science: After the practice turn in philosophy of science. Dordrecht: Springer, pp. 89–104.CrossRefGoogle Scholar
  65. Woodward, J. (2002). What is a mechanism? A counterfactual account. Philosophy of Science, 69, S366–S377.CrossRefGoogle Scholar
  66. Woodward, J. (2006). Some varieties of robustness. Journal of Economic Methodology, 13, 219–240.CrossRefGoogle Scholar
  67. Wright, L. (1968). The case against teleological reductionism. The British Journal for the Philosophy of Science, 19, 211–223.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Humanistic StudiesUniversity of MacerataMacerataItaly

Personalised recommendations