Advertisement

Prolegomena to a History of Robustness

  • Silvia CaianielloEmail author
Chapter
Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL, volume 23)

Abstract

The paper outlines a historical reconstruction of the spread of the concept of robustness across different disciplinary fields, and of the major significant shifts, which comprise the stratigraphy of the semantic expansion of this notion. Starting from the emergence of the modern notion in statistics, which inspired also its actual epistemic instantiations, the paper examines the historical relationship between dynamical systems theory and the notion of robustness, and analyzes the developments that prompted the shift from “modern” to “robust” control theory in engineering. It further deals with the first instantiations of the concept in biology in the 1990s, in order to highlight the turn impressed on the concept by Systems Biology, focusing particularly on its implications as to the relationship between robustness and complexity.

Keywords

Robustness Statistics Dynamical systems theory Systems biology Engineering Control theory History of science History of concepts Organized complexity Internal model principle Historical epistemology 

References

  1. Abersman, S. (2016). Overcomplicated. Technology at the limits of comprehension. New York: Penguin Random House.Google Scholar
  2. Abraham, R., & Marsden, J. E. (1978). Foundations of mechanics (II ed.). Reading: Addison-Wesley.Google Scholar
  3. Albert, R., & Barabasi, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.CrossRefGoogle Scholar
  4. Aldana, M., Balleza, E., Kauffman, S. A., & Resendiz, O. (2007). Robustness and evolvability in genetic regulatory networks. Journal of Theoretical Biology, 245, 433–448.CrossRefGoogle Scholar
  5. Alderson, D. L., & Doyle, J. C. (2010). Contrasting views of complexity and their implications for network-centric infrastructures. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 40(4), 839–852.CrossRefGoogle Scholar
  6. Alderson, D. L., & Willinger, W. (2005). A contrasting look at self-organization in the internet and next-generation communication networks. IEEE Communications Magazine, 43(7), 94–100.CrossRefGoogle Scholar
  7. Alon, U. (2006). An introduction to systems biology. Design principles of biological circuits. Boca Raton: Chapman & Hall/CRC.Google Scholar
  8. Alon, U., Surette, M. G., Barkai, N., & Leibler, S. (1999). Robustness in bacterial chemotaxis. Nature, 397, 168–171.CrossRefGoogle Scholar
  9. Andronov, A. A., & Pontryagin, L. (1937). Systèmes grossiers. Doklady Akademi Nauk SSSR, 14, 247–250.Google Scholar
  10. Andronov, A. A., Vitt, A. A., & Khaikin, S. E. (1966). Theory of oscillators (1937). London: Pergamon.Google Scholar
  11. Arvidsson, M. (2008). Principles of robust design methodology. Quality and Reliability Engineering International, 24(1), 23–35.CrossRefGoogle Scholar
  12. Ashby, C. R. (1958). Requisite variety and its implications for the control of complex systems. Cybernetica, 1, 1–17.Google Scholar
  13. ASTM dictionary of engineering science & technology. 2005. 10th ed. West Conshohocken: ASTM International.Google Scholar
  14. Åström, K.-J., & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers. Princeton: Princeton University Press.Google Scholar
  15. Aubin, D., & Dahan Dalmedico, A. (2002). Writing the history of dynamical systems and chaos: Longue durée and revolution, disciplines and cultures. Historia Mathematica, 29(3), 273–339.CrossRefGoogle Scholar
  16. Bailey, K. D. (1994). Sociology and the new systems theory. Toward a theoretical synthesis. Albany: State University of New York Press.Google Scholar
  17. Bak, P. (1996). How nature works: The science of self-organized criticality. New York: Springer.CrossRefGoogle Scholar
  18. Barkai, N., & Leibler, S. (1997). Robustness in simple biochemical networks. Nature, 387, 913–917.CrossRefGoogle Scholar
  19. Bennett, S. (1993). A history of control engineering (pp. 1930–1955). Stevenage: Peregrinus – IEET.Google Scholar
  20. Bennett, S. (1996). A brief history of automatic control. IEEE Control Systems 16 (3), 17–25Google Scholar
  21. Bennett, S. (2004). Technological concepts and mathematical models in the evolution of control engineering. In M. Lucertini, A. Millàn Gasca, & F. Nicolò (Eds.), Technological concepts and mathematical models in the evolution of modern engineering systems: Controlling managing organizing (pp. 103–128). Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
  22. Bertolaso, M. (2017). Robustez biológica. In C. E. Vanney, I. Silva, & J. F. Franck (Eds.), Diccionario Interdisciplinar Austral. http://dia.austral.edu.ar
  23. Bertolaso, M., & Caianiello, S. (2016). Robustness as organized heterogeneity. Rivista di Filosofia Neoscolastica, CVIII(2), 293–303.Google Scholar
  24. Bissell, C. (1998). A.A. Andronov and the development of Soviet control engineering. IEEE Control Systems, 18(1), 56–62.Google Scholar
  25. Bissell, C. (2009). In Nof (Ed.), A history of automatic control (pp. 53–69). Heidelberg: Springer.Google Scholar
  26. Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40(3/4), 318–335.CrossRefGoogle Scholar
  27. Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In Launer & Wilkinson (Eds.), Robustness in Statistics (pp. 201–236). Madison: University of Wisconsin.CrossRefGoogle Scholar
  28. Box, G. E. P. (1983). An apology for Ecumenism in statistics. In G. E. P. Box, T. Leonard, & D. F. J. Wu (Eds.), Scientific inference, data analysis, and robustness (pp. 51–84). New York: Academic.CrossRefGoogle Scholar
  29. Broido, A. D., & Clauset, A. (2018). Scale-free networks are rare. Preprint https://arxiv.org/abs/1801.03400. Accessed 24 June 2018.
  30. Bryson, A. E. J. (1996). Optimal control – 1950 to 1985. IEEE Control Systems, 16(3), 26–33.CrossRefGoogle Scholar
  31. Callebaut, W. (2007). Herbert Simon’s silent revolution. Biological Theory, 2(1), 76–86.CrossRefGoogle Scholar
  32. Callebaut, W. (2010). The dialectic of dis/unity in the evolutionary synthesis and its extensions. In M. Pigliucci & G. B. Müller (Eds.), Evolution. The extended synthesis (pp. 443–481). Cambridge: The MIT Press.CrossRefGoogle Scholar
  33. Carlson, J. M., & Doyle, J. C. (2002). Complexity and robustness. PNAS, 99(1), 2538–2545.CrossRefGoogle Scholar
  34. Carroll, S. B., Grenier, J. K., & Weatherbee, S. D. (2001). From DNA to diversity. London: Blackwell.Google Scholar
  35. Cascante, M., Curto, R., & Sorribas, A. (1995). Testing the robustness of the steady-state characteristics of a metabolic pathway: Parameter sensitivity as a basic feature for model validation. Journal of Biological Systems, 3, 105–113.CrossRefGoogle Scholar
  36. Cilliers, P. (1998). Complexity and postmodernism. London: Routledge.Google Scholar
  37. Cogan, B. (2006). Computing robustness in biology. Scientific Computing World, 2005/2006. https://www.scientific-computing.com/issue/december-2005january-2006
  38. Cornish-Bowden, A., Cárdenas, M. L., Letelier, J.-C., Soto-Andrade, J., & Guíñez Abarzúa, F. (2004). Understanding the parts in terms of the whole. Biology of the Cell, 96, 713–717.CrossRefGoogle Scholar
  39. Csermely, P., London, A., & Wu, L.-Y. (2013). Structure and dynamics of core/periphery networks. Journal of Complex Networks, 1, 93–123.CrossRefGoogle Scholar
  40. Csete, M., & Doyle, J. C. (2002). Reverse engineering of biological complexity. Science, 295, 1664–1669.CrossRefGoogle Scholar
  41. Csete, M., & Doyle, J. C. (2004). Bow ties, metabolism and disease. Trends in Biotechnology, 22(9), 446–450.CrossRefGoogle Scholar
  42. Dahan Dalmedico, A. (2004). Early developments of nonlinear science in Soviet Russia: The Andronov School at Gor’kiy (in collaboration with I. Gouzévitch). Science in Context, 17, 235–265.CrossRefGoogle Scholar
  43. Davison, E. J., & Goldenberg, A. (1975). Robust control of a general servomechanism problem: The servo compensator. Automatica, 11, 461–471.CrossRefGoogle Scholar
  44. De Robertis, E. A., Morita, E. M., & Cho, K. W. Y. (1991). Gradient fields and homeobox genes. Development, 112, 669–678.Google Scholar
  45. Dickson, M., & Baird, D. (2011). Significance testing. In P. S. Bandyopadhyay & M. R. Forster (Eds.), Philosophy of statistics (pp. 199–229). Oxford: North Holland.CrossRefGoogle Scholar
  46. Dorato, P. (1987). A historical review of robust control. Control Systems Magazine IEEE, 7(2), 44–47.CrossRefGoogle Scholar
  47. Doyle, J. C. (1979). Robustness of multiloop linear feedback systems. In Proceedings of the 1978 IEEE conference on decision and control (pp. 12–18). New York: IEEE Press.Google Scholar
  48. Doyle, F. J., III, & Stelling, J. (2006). Systems interface biology. Journal of the Royal Society Interface, 3(10), 603–616.CrossRefGoogle Scholar
  49. Doyle, J. C., Wall, J. E., & Stein, G. (1982). Performance and robustness analysis for structured uncertainty. 21st IEEE conference on decision and control (pp. 629–636). New York: IEEE Press.Google Scholar
  50. Doyle, J. C., Glover, K., Khargonekar, P., & Francis, B. A. (1989). State-space solutions to standard H2 and H1 control problems. IEEE Transactions on Automatic Control, 34, 831–847.CrossRefGoogle Scholar
  51. Doyle, J. C., Packard, A., & Zhou, K. (1991). Review of LFTs, LMIs, and μ. In Proceedings of the 30th IEEE conference on decision and control. New York: IEEE Press.Google Scholar
  52. Dullerud, G. E., & Paganini, F. G. (2000). A course in robust control theory – A convex approach. New York: Springer.CrossRefGoogle Scholar
  53. Fell, D. A. (1992). Metabolic control analysis: A survey of its theoretical and experimental development. Biochemical Journal, 286, 313–330.CrossRefGoogle Scholar
  54. Fox Keller, E. (2002). The century of the gene. Cambridge, MA: Harvard University Press.Google Scholar
  55. Francis, B. A., & Wonham, W. M. (1976). The internal model principle of control theory. Automatica, 12, 457–465.CrossRefGoogle Scholar
  56. Francis, B. A., Sebakhy, O. A., & Wonham, W. M. (1974). Synthesis of multivariable regulators: The internal model principle. Applied Mathematics & Optimization, 1, 64–86.CrossRefGoogle Scholar
  57. Friedlander, T., Mayo, A. E., Tlusty, T., & Alon, U. (2015). Evolution of bow-tie architectures in biology. PLoS Computational Biology, 11(3), e1004055.CrossRefGoogle Scholar
  58. Galison, P. (1994). The ontology of the enemy: Norbert Wiener and the cybernetic vision. Inquiry, 21(1), 228–266.Google Scholar
  59. Gigerenzer, G., et al. (1989). The empire of chance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  60. Gilbert, S. F., Opitz, J., & Raff, R. A. (1996). Resynthesizing evolutionary and developmental biology. Developmental Biology, 173, 357–372.CrossRefGoogle Scholar
  61. Goodwin, B. C. (1990). Structuralism in biology. Science Progress, 74(2), 227–243.Google Scholar
  62. Goodwin, B. C., & Saunders, P. (1989). Theoretical biology: Epigenetic and evolutionary order from complex systems. Edinburgh: Edinburgh University Press.Google Scholar
  63. Goodwin, B. C., Kauffman, S. A., & Murray, J. D. (1993). Is morphogenesis an intrinsically robust process? Journal of Theoretical Biology, 163(1), 135–144.CrossRefGoogle Scholar
  64. Gould, S. J. (1992). Bully for brontosaurus: Reflections in natural history. New York: W. W. Norton & Company.Google Scholar
  65. Green, S. (2015). Can biological complexity be reverse engineered? Studies in History and Philosophy of Biological and Biomedical Sciences, 53, 73–83.CrossRefGoogle Scholar
  66. Green, S., & Wolkenhauer, O. (2013). Tracing organizing principles: Learning from the history of systems biology. History and Philosophy of the Life Sciences, 35(4), 553–576.Google Scholar
  67. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer.CrossRefGoogle Scholar
  68. Hagen, J. B. (1992). An entangled bank: The origins of ecosystem ecology. New Brunswick: Rutgers University Press.Google Scholar
  69. Hansen, L. P., & Sargent, T. J. (2008). Robustness. Princeton: Princeton University Press.CrossRefGoogle Scholar
  70. Hartwell, L. (1997). Theoretical biology: A robust view of biochemical pathways. Nature, 387, 855–857.CrossRefGoogle Scholar
  71. Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular cell biology. Nature, 402, 47–52.CrossRefGoogle Scholar
  72. Holmes, P. (2005). Ninety plus thirty years of nonlinear dynamics: Less is more and more is different. International Journal of Bifurcation and Chaos, 15(9), 2703–2716.CrossRefGoogle Scholar
  73. Huber, P. J. (1972). Robust statistics: A review. The Annals of Mathematical Statistics, 43(4), 1041–1067.CrossRefGoogle Scholar
  74. Huber, P. J. (1981). Robust statistics. New York: Wiley.CrossRefGoogle Scholar
  75. Hughes, T. P. (1993). Modern and postmodern engineering. Paper presented at Seventh Annual Arthur Miller Lecture on Science and Ethics, MIT, April 8.Google Scholar
  76. Hughes, T. P. (1998). Rescuing Prometheus. New York: Vintage Books.Google Scholar
  77. Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177(2), 213–245.CrossRefGoogle Scholar
  78. Huneman, P. (Ed.). (2013). Functions: Selection and mechanism. Dordrecht: Springer.Google Scholar
  79. Igamberdiev, A. U., Beloussov, L. V., & Gordon, R. (2012). Editorial to biological morphogenesis: Theory and computation. Biosystems, 109(3), 241–242.CrossRefGoogle Scholar
  80. Jen, E. (2005). Stable or robust? What’s the difference? In E. Jen (Ed.), Robust design. A repertoire of biological, ecological, and engineering case studies (pp. 7–20). Oxford: Oxford University Press.Google Scholar
  81. Johnson, H. G. (1968). The economic approach to social questions. Economica N.S., 35(137), 1–21.CrossRefGoogle Scholar
  82. Kacser, H., & Burns, J. A. (1979). Molecular democracy: Who shares the controls? Biochemical Society Transactions, 7(5), 1149–1160.CrossRefGoogle Scholar
  83. Kauffman, S. A. (1990). Requirements for evolvability in complex systems: Orderly components and frozen dynamics. Physica, D, 42, 135–152.CrossRefGoogle Scholar
  84. Kauffman, S. A. (1993). The origins of order. New York: Oxford University Press.Google Scholar
  85. Keller, E. F. (2002). Developmental robustness. Annals of the New York Academy of Sciences, 981, 189–201.CrossRefGoogle Scholar
  86. Keller, E. F. (2005). Revisiting scale-free networks. BioEssays, 27(10), 1060–1068.CrossRefGoogle Scholar
  87. Keller, E. F. (2008). Organisms, machines, and thunderstorms: A history of self-organization, part one. Historical Studies in the Natural Sciences, 38(1), 45–75.CrossRefGoogle Scholar
  88. Keller, E. F. (2009). Organisms, machines, and thunderstorms: A history of self-organization, part two. Historical Studies in the Natural Sciences, 39(1), 1–31.CrossRefGoogle Scholar
  89. Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5, 826–837.CrossRefGoogle Scholar
  90. Kitano, H. (2007). Towards a theory of biological robustness. Molecular Systems Biology, 3, 137.CrossRefGoogle Scholar
  91. Krakauer, D. C. (2005). Robustness in biological systems: A provisional taxonomy. In T. S. Deisboeck & J. Yasha Kresh (Eds.), Complex systems science in biomedicine (pp. 185–207). New York: Plenum Press.Google Scholar
  92. Lander, A. D. (2011). Pattern, growth, and control. Cell, 144(6), 955–969.CrossRefGoogle Scholar
  93. Launer, R. L., & Wilkinson, G. N. (Eds.). (1979). Robustness in statistics. New York: Academic.Google Scholar
  94. Lee, K. K. (1992). Lectures on dynamical systems, structural stability, and their applications. Singapore: World Scientific.CrossRefGoogle Scholar
  95. Lesne, A. (2008). Robustness: Confronting lessons from physics and biology. Biological Reviews, 83, 509–532.Google Scholar
  96. Levins, R. (1966). The strategy of models building in population biology. American Scientist, 54, 421–431.Google Scholar
  97. Levins, R. (1993). A response to Orzack and Sober: Formal analysis and the fluidity of science. Quarterly Review of Biology, 68, 547–555.CrossRefGoogle Scholar
  98. Lima-Mendez, G., & van Helden, J. (2009). The powerful law of the power law and other myths in network biology. Molecular BioSystems, 5, 1482–1493.CrossRefGoogle Scholar
  99. Lin, F. (2007). Robust control design: An optimal control approach. Chichester: John Wiley/RSP.CrossRefGoogle Scholar
  100. Ma, H. W., & Zeng, A. P. (2003). The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics, 19, 1423–1430.CrossRefGoogle Scholar
  101. Mattick, J. S., & Gagen, M. J. (2005). Accelerating networks. Science, 307(5711), 856–858.CrossRefGoogle Scholar
  102. Maull, N., & Darden, L. (1977). Interfield theories. Philosophy of Science, 44(1), 43–64.CrossRefGoogle Scholar
  103. May, R. M. (1973). Stability and complexity in model ecosystems. Princeton: Princeton University Press.Google Scholar
  104. Michel, A. N. (1996). Stability: The common thread in the evolution of feedback control. IEEE Control Systems, 16(3), 50–60.CrossRefGoogle Scholar
  105. Minelli, A. (2003). The development of animal form: Ontogeny, morphology, and evolution. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  106. Morohashi, M., Winn, A. E., Borisuk, M. T., Bolouri, H., Doyle, J. C., & Kitano, H. (2002). Robustness as a measure of plausibility in models of biochemical networks. Journal of Theoretical Biology, 216, 19–30.CrossRefGoogle Scholar
  107. Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological function. The British Journal for the Philosophy of Science, 60(4), 813841.CrossRefGoogle Scholar
  108. Neculai, A. (2005). Modern control theory. A historical perspective. Studies in Informatics and Control, 10(1), 51–62. https://camo.ici.ro/neculai/history.pdf.Google Scholar
  109. Nicolis, G., & Prigogine, I. (1989). Exploring complexity. An introduction. New York: W.H. Freeman & Co.Google Scholar
  110. Nikolov, S., Yankulova, E., Wolkenhauer, O., & Petrov, V. (2007). Principal difference between stability and structural stability (robustness) as used in systems biology. Nonlinear Dynamics, Psychology, and Life Sciences, 11(4), 413–433.Google Scholar
  111. Nyquist, H. (1932). Regeneration theory. Bell Systems Technical Journal, 2, 126–147.CrossRefGoogle Scholar
  112. Ogata, K. (2010). Modern control engineering (V ed.). London: Prentice Hall.Google Scholar
  113. Owen, R. (1883). On Dinornis (Part XXIV): Containing a description of the head and feet, with the dried integuments, of an individual of the species Dinornis didinus. Transactions of the Zoological Society of London, 11(8), 257–261.Google Scholar
  114. Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A., & Palsson, B. O. (2003). Metabolic pathways in the post-genome era. Trends in Biochemical Sciences, 28(5), 250–258.CrossRefGoogle Scholar
  115. Papp, B., Notebaart, R. A., & Pál, C. (2011). Systems-biology approaches for predicting genomic evolution. Nature Reviews Genetics, 12(9), 591–602.CrossRefGoogle Scholar
  116. Pickering, A. (2010). The cybernetic brain. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  117. Pugh, C., & Peixoto, M. P. (2008). Structural stability. Scholarpedia, 3(9), 4008.CrossRefGoogle Scholar
  118. Roberts, A., & Tregonnin, K. (1980). The robustness of natural systems. Nature, 288, 265–266.CrossRefGoogle Scholar
  119. Rollins, L. (1999). Robust control theory. Carnagie Mellon University White Paper. https://users.ece.cmu.edu/~koopman/des_s99/control_theory/
  120. Rosen, R. (1967). Optimality principles in biology. New York: Springer Science+Business Media.CrossRefGoogle Scholar
  121. Rosen, R. (1970). Dynamical system theory in biology: Stability theory and its applications. New York: Wiley.Google Scholar
  122. Safonov, M. G. (2012). Origins of robust control: Early history and future speculations. Annual Reviews in Control, 36(2), 173–181.CrossRefGoogle Scholar
  123. Safonov, M. G., & Fan, M. K. H. (1997). Editorial (Special issue on multivariable stability margin). International Journal of Robust and Nonlinear Control, 7, 97–103.CrossRefGoogle Scholar
  124. Savageau, M. A. (1971). Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature, 229, 542–544.CrossRefGoogle Scholar
  125. Savageau, M. A. (1974). Optimal design of feedback control by inhibition. Journal of Molecular Evolution, 4, 139–156.CrossRefGoogle Scholar
  126. Savageau, M. A. (1976). Biochemical systems analysis: A study of function and design in molecular biology. Reading: Addison-Wesley.Google Scholar
  127. Savageau, M. A. (1991). Reconstructionist molecular biology. The New Biologist, 3(2), 190–197.Google Scholar
  128. Savageau, M. A. (2001). Design principles for elementary gene circuits: Elements, methods, and examples. Chaos, 11(1), 142–159.CrossRefGoogle Scholar
  129. Schmidt, J. C. (2008). Instabilität in Natur und Wissenschaft: Eine Wissenschaftsphilosophie der nachmodernen Physik. New York: Walter de Gruyter.CrossRefGoogle Scholar
  130. Shivamoggi, B. K. (2014). Nonlinear dynamics and chaotic phenomena: An introduction (II ed.). Dordrecht: Springer.CrossRefGoogle Scholar
  131. Siegal, M. L., Promislow, D. E. L., & Bergman, A. (2007). Functional and evolutionary inference in gene networks: Does topology matter? Genetica, 129, 83–103.CrossRefGoogle Scholar
  132. Smale, S. (1966). Structurally stable systems are not dense. American Journal of Mathematics, 87, 491–496.CrossRefGoogle Scholar
  133. Soler, L., Trizio, E., Nickles, T., & Wimsatt, W. C. (Eds.). (2012). Characterizing the robustness of science: After the practice turn in philosophy of science. Dordrecht: Springer.Google Scholar
  134. Sontag, E. D. (2004). Some new directions in control theory inspired by systems biology. Systems Biology, 1(1), 9–18.CrossRefGoogle Scholar
  135. Stigler, S. M. (2010). The changing history of robustness. The American Statistician, 64(4), 277–281.CrossRefGoogle Scholar
  136. Taylor, P. (1988). Technocratic optimism, H.T. Odum, and the partial transformation of ecological metaphor after World War II. Journal of the History of Biology, 21, 213–244.CrossRefGoogle Scholar
  137. Thom, R. (1974). La linguistique, discipline morphologique exemplaire. Critique, 30, 235–245.Google Scholar
  138. Thom, R. (1969). Topological models in biology. Topology, 8, 313–335.CrossRefGoogle Scholar
  139. Thom, R. (1975). Structural stability and morphogenesis. London: W.A. Benjamin A brief history of automatic control. IEEE Control Systems, 16(3), 17–25.Google Scholar
  140. Thom, R. (1983). Darwin, cent ans après. Rivista di Biologia, 76(1), 11–22.Google Scholar
  141. Umulis, D., O’Connor, M. B., & Othmer, H. G. (2008). Robustness of embryonic spatial patterning in Drosophila melanogaster. Current Topics in Developmental Biology, 81, 65–111.CrossRefGoogle Scholar
  142. Vajk, I., Hetthéssy, J., & Bars, R. (2009). In Nof (Ed.), Control theory for automation – Advanced techniques (pp. 173–198). Berlin: Springer.Google Scholar
  143. van Nimwegen, E., Crutchfield, J. P., & Huynen, M. (1999). Neutral evolution of mutational robustness. PNAS, 96(17), 9716–9720.CrossRefGoogle Scholar
  144. Visser, J. A. G. M., Hermisson, J., Wagner, G. P., Meyers, L. A., Bagheri-Chaichian, H., Blanchard, J. L., Chao, L., Cheverud, J. M., Elena, S. F., Fontana, W., Gibson, G., Hansen, T. F., Krakauer, D., Lewontin, R. C., Ofria, C., Rice, S. H., von Dassow, G., Wagner, A., & Whitlock, M. C. (2003). Perspective: Evolution and detection of genetic robustness. Evolution, 57(9), 1959–1972.Google Scholar
  145. Voit, E. O. (2013). Biochemical systems theory: A review. ISRN Biomathematics, 1, 53.Google Scholar
  146. von Dassow, G., Meir, E., Munro, E. M., & Odell, G. M. (2000). The segment polarity network is a robust developmental module. Nature, 406, 188–192.CrossRefGoogle Scholar
  147. Wagner, A. (1999). Causality in complex systems. Biology and Philosophy, 14, 83–101.CrossRefGoogle Scholar
  148. Wagner, A. (2005). Robustness and evolvability in living systems. Princeton: Princeton University Press.Google Scholar
  149. Wagner, A. (2008). Robustness and evolvability: A paradox resolved. Proceedings of the Royal Society B, 275, 91–100.CrossRefGoogle Scholar
  150. Wagner, A. (2014). Arrival of the fittest: solving evolution’s greatest puzzle. London: OneWorld.Google Scholar
  151. Wagner, A., & Stadler, P. F. (1999). Viral RNA and evolved mutational robustness. Journal of Experimental Zoology Part B, 285, 119–127.CrossRefGoogle Scholar
  152. Weaver, W. (1948). Science and complexity. American Scientist, 36, 536–544.Google Scholar
  153. Weiss, P. (1963). The cell as a unit. Journal of Theoretical Biology, 5, 389–397.CrossRefGoogle Scholar
  154. Westerhoff, H. V., & Palsson, B. O. (2004). The evolution of molecular biology into systems biology. Nature Biotechnology, 22, 1249–1252.CrossRefGoogle Scholar
  155. Whitacre, J. M. (2012). Biological robustness: Paradigms, mechanisms, and systems principles. Frontiers in Genetics, 3, 67.Google Scholar
  156. Whittle, P. (1996). Optimal control. Chichester: Wiley.Google Scholar
  157. Wilkinson, G. N. (1979). In Launer & Wilkinson (Eds.), Robust inference – The Fisherian approach (pp. 259–290). New York: Academic.Google Scholar
  158. Wimsatt, W. C. (2007). False models as means to truer theories. In W. C. Wimsatt (Ed.), Re-engineering philosophy for limited beings (chap. 6). Cambridge, MA: Harvard University Press.Google Scholar
  159. Woodward, J. (2006). Some varieties of robustness. Journal of Economic Methodology, 13(2), 219–240.CrossRefGoogle Scholar
  160. Yi, T. M., Huang, Y., Simon, M. I., & Doyle, J. C. (2000). Robust perfect adaptation in bacterial chemotaxis through integral feedback control. PNAS, 97, 4649–4653.CrossRefGoogle Scholar
  161. Zames, G. (1996). Input-output feedback stability and robustness, 1959-85. IEEE Control Systems, 16(3), 61–66.CrossRefGoogle Scholar
  162. Zhou, T., & Carlson, J. M. (2000). Dynamics and changing environments in highly optimized tolerance. Physical Review E, 62(3), 3197–3204.CrossRefGoogle Scholar
  163. Zhou, K., Doyle, J. C., & Glover, K. (1995). Robust and optimal control. Englewood Cliffs: Prentice Hall.Google Scholar
  164. Zhou, T., Carlson, J. M., & Doyle, J. C. (2002). Mutation, specialization, and hypersensitivity in highly optimized tolerance. PNAS, 99(4), 2049–2054.CrossRefGoogle Scholar
  165. Zhou, J. X., Smal, A., Fouquier d’Hérouël, A., Price, N. A., & Huang, S. (2016). Relative stability of network states in Boolean network models of gene regulation in development. Biosystems, 142–143, 15–24.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute for the History of Philosophy and Science in Modern Age (ISPF)National Research CouncilNaplesItaly
  2. 2.Zoological Station Anton DohrnNaplesItaly

Personalised recommendations