Advertisement

Compression for Managing Scars

  • Luc TéotEmail author
  • Marguerite Guillot Masanovic
  • Christine Faure-Chazelles
Chapter

Abstract

Compression is one of the most powerful agent in reducing hypertrophic scars. The different modes of compression are dependant on the clinical evolution of the scar, the anatomical location and the compliance of the patient to wear uncomfortable and socially impacting therapies. This segment is in permanent challenge as most of the proposed solutions are fewly accepted by the patients, more particularly in adolescent or young adults. Since a few years new limited local technologies propose a mechanical immobilisation limited to the scar itself.

Keywords

Hypertrophic scars Keloids Compressive therapy 

References

  1. 1.
    Linares HA, Larson DL, Willis-Galstaun BA. Historical notes on the use of pressure in treatment of hypertrophic scars and keloids. Burns. 1993;19:17–21.CrossRefGoogle Scholar
  2. 2.
    Bloemen MC, van der Veer WM, Ulrich MM, et al. Prevention and curative management of hypertrophic scar formation. Burns. 2009;35:463–75.CrossRefGoogle Scholar
  3. 3.
    Mustoe TA, Cooter RD, Gold MH, Hobbs FD, Ramelet AA, Shakespeare PG, Stella M, Téot L, et al. International advisory panel on scar management. Plast Reconstr Surg. 2002;110(2):560–71.CrossRefGoogle Scholar
  4. 4.
    Ogawa R, Okai K, Tokumura F, Mori K, Ohmori Y, Huang C, et al. The relationship between skin stretching/contraction and pathologic scarring: the important role of mechanical forces in keloid generation. Wound Repair Regen. 2012;20(2):149–57.  https://doi.org/10.1111/j.1524-475X.2012.00766.x. Epub 2012 Feb 14CrossRefPubMedGoogle Scholar
  5. 5.
    Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11.CrossRefGoogle Scholar
  6. 6.
    Desmouliere A, Badid C, Bochaton-Piallat ML, Gabbiani G. Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. Int J Biochem Cell Biol. 1997;29(1):19–30.CrossRefGoogle Scholar
  7. 7.
    Darby IA, Laverdet B, Bonté F, Desmoulière A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014;7:301–11.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Renò F, Sabbatini M, Lombardi F, et al. In vitro mechanical compression induces apoptosis and regulates cytokines release in hypertrophic scars. Wound Repair Regen. 2003;11:331–6.CrossRefGoogle Scholar
  9. 9.
    Gavroy JP, Dinard J, Costagliola M, Rouge D, Griffe O, Téot L, Ster F. LPG and the cutaneous softening of burns. J Plaies et Cicatrisation Dec. 1996;5:42–6.Google Scholar
  10. 10.
    Harn HI, Ogawa R, Hsu CK, Hughes MW, Tang MJ, Chuong CM. The tension biology of wound healing. Exp Dermatol. 2017.  https://doi.org/10.1111/exd.13460. [Epub ahead of print] Review.
  11. 11.
    Longaker MT, Rohrich RJ, Greenberg L, Furnas H, Wald R, Bansal V, et al. A randomized controlled trial of the embrace advanced scar therapy device to reduce incisional scar formation. Plast Reconstr Surg. 2014;134(3):536–46.CrossRefGoogle Scholar
  12. 12.
    Hwang K, Kim HJ, Kim KY, Han SH, Hwang SJ. Skin tension related to tension reduction sutures. Adv Wound Care (New Rochelle). 2014;3(10):626–34.CrossRefGoogle Scholar
  13. 13.
    Suarez E, Syed F, Rasgado TA, Walmsley A, Mandal P, Bayat A. Skin equivalent tensional forces alters keloid fibroblast behavior and phenotype. Aesthetic Plast Surg. 2014;38:767–78.CrossRefGoogle Scholar
  14. 14.
    Kilpadi DV, Lessing C, Derrick K. Healed porcine incisions previously treated with a surgical incision management system: mechanical, histomorphometric, and gene expression properties. Biophys J. 2014;106(4):932–43.  https://doi.org/10.1016/j.bpj.2013.12.002.CrossRefGoogle Scholar
  15. 15.
    Parry JR, Stupak HD, Johnson CM. The immediate use of a silicone sheet wound closure device in scar reduction and prevention. Ear Nose Throat J. 2016;95(2):E27–33.PubMedGoogle Scholar
  16. 16.
    Barnes LA, Marshall CD, Leavitt T, Hu MS, Moore AL, Gonzalez JG, Longaker MT, Gurtner GC. Mechanical forces in cutaneous wound healing: emerging therapies to minimize scar formation. Adv Wound Care (New Rochelle). 2018;7(2):47–56.  https://doi.org/10.1089/wound.2016.0709. ReviewCrossRefGoogle Scholar
  17. 17.
    Roques C. Pressure therapy to treat burn scars. Wound Repair Regen. 2002;10(2):122–5.CrossRefGoogle Scholar
  18. 18.
    Mc Ginn CA, Boucher N. Institut de Réadaptation en déficience Physique de Québec. Les vêtements compressifs dans le traitement et la réadaptation des grands Brûlés. Exploration préliminaire de la littérature; 2010.Google Scholar
  19. 19.
    Engrav LH, Heimbach DH, Rivara FP, et al. 12-year within-wound study of the effectiveness of pressure garment therapy. Burns. 2010;36:975–83.CrossRefGoogle Scholar
  20. 20.
    Atiyeh BS. Nonsurgical management of hypertrophic scars: evidence-based therapies, standard practices, and emerging methods. Aesthet Plast Surg. 2007;31:468–92.CrossRefGoogle Scholar
  21. 21.
    Ripper S, Renneberg B, Landmann C, et al. Adherence to pressure garment therapy in adult burn patients. Burns. 2009;35:657–64.CrossRefGoogle Scholar
  22. 22.
    Monstrey S, Middelkoop E, Vranckx JJ, Bassetto F, Ziegler UE, Meaume S, Téot L. Updated scar management practical guidelines: non-invasive and invasive measures. J Plast Reconstr Aesthet Surg. 2014;67:1017–25.CrossRefGoogle Scholar
  23. 23.
    Jin-Wei AI, Liu J-t, Pei S-D, Liu Y, Li D-S, Lin H-M, Pei B. The effectiveness of pressure therapy (15–25 mmHg) for hypertrophic burn scars: a systematic review and meta-analysis. Sci Rep. 2017;7:40185.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luc Téot
    • 1
    Email author
  • Marguerite Guillot Masanovic
    • 1
  • Christine Faure-Chazelles
    • 1
  1. 1.Montpellier University HospitalMontpellier CedexFrance

Personalised recommendations