Algebraic Methods in General Rough Sets pp 641-655 | Cite as

# Rough Objects in Monoidal Closed Categories

## Abstract

This chapter will build upon previous achievements on monadic rough objects over the category Set, and show how rough object approximation and algebraic manipulation in general can be enriched by extending constructions to work similarly over monoidal closed categories embracing both algebraic as well as order structures. The chapter will also show how the rough information model in this monoidal closed category extension connects with other information models being relational in their basic original structures. Additionally, the chapter will discuss the potential of real world applications.

## Notes

### Acknowledgement

Research reported by the second author of this chapter was partially supported by the Spanish project:TIN2015-70266-C2-1-P.

## References

- 1.Banach, S.: Théorie des opérations linéares. Zu Subwencji Funduszu Kultury Narodowej, Warsaw (1932)Google Scholar
- 2.Bénabou, J.: Catégories avec multiplication. C. R. Acad. Sci. Paris
**256**, 1887–1890 (1963)MathSciNetzbMATHGoogle Scholar - 3.Bénabou, J.: Algébre élémentaire dans les catégories avec multiplication. C. R. Acad. Sci. Paris
**258**, 771–774 (1964)MathSciNetzbMATHGoogle Scholar - 4.Böttiger, Y., Al, E.: SFINX—a drug-drug interaction database designed for clinical decision support systems. Eur. J. Clin. Pharmacol.
**65**(6), 627–633 (2009). https://doi.org/10.1007/s00228-008-0612-5 CrossRefGoogle Scholar - 5.Bourbaki, N.: Séminaire de Géométrie Algébrique du Bois Marie - 1963–64 - Théorie des topos et cohomologie étale des schémas - (SGA 4) - vol. 1. Lecture Notes in Mathematics, vol. 269. Springer, Berlin (1972)Google Scholar
- 6.Bousquet, J., Al, E.: Building bridges for innovation in ageing: synergies between action groups of the EIP on AHA. J. Nutr. Health Aging
**21**(1), 92–104 (2016). https://doi.org/10.1007/s12603-016-0803-1 CrossRefGoogle Scholar - 7.de Vries, M., Al, E.: Fall-risk-increasing drugs: a systematic review and meta-analysis: I. Cardiovascular drugs. J. Am. Med. Dir. Assoc.
**19**(4), 371.e1–371.e9 (2018). https://doi.org/10.1016/j.jamda.2017.12.013 CrossRefGoogle Scholar - 8.Eilenberg, S., MacLane, S.: General theory of natural equivalences. Trans. Am. Math. Soc.
**58**(2), 231–294 (1945)MathSciNetCrossRefGoogle Scholar - 9.Eklund, P.: The syntax of many-valued relations. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 61–68. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-40581-0_6 Google Scholar
- 10.Eklund, P., Gähler, W.: Contributions to fuzzy convergence. In: Gähler, W., Herrlich, H., Preuß, G. (eds.) Recent Developments of General Topology and Its Applications, International Conference in Memory of Felix Hausdorff (1868–1942), pp. 118–123. Akademie Verlag, Berlin (1992)Google Scholar
- 11.Eklund, P., Gähler, W.: Partially ordered monads and powerset Kleene algebras. In: Proceedings of the 10th Information Processing and Management of Uncertainty in Knowledge Based Systems Conference (IPMU), vol. 3, pp. 1865—1869 (2004)Google Scholar
- 12.Eklund, P., Galán, M.A.: Monads can be rough. In: Rough Sets and Current Trends in Computing, pp. 77–84. Springer, Berlin (2006). https://doi.org/10.1007/11908029_9 CrossRefGoogle Scholar
- 13.Eklund, P., Galán, M.: The rough powerset monad. J. Mult. Valued Log. Soft Comput.
**13**, 321–334 (2007)MathSciNetzbMATHGoogle Scholar - 14.Eklund, P., Galán, M.Á.: Partially ordered monads and rough sets, chapter. In: Transactions on Rough Sets VIII, pp. 53–74. Springer, Berlin (2008)Google Scholar
- 15.Eklund, P., Galán, M., Ojeda-Aciego, M., Valverde, A.: Set functors and generalised terms. In: Proc. IPMU 2000, 8th Information Processing and Management of Uncertainty in Knowledge-Based Systems Conference, vol. III, pp. 1595–1599 (2000)Google Scholar
- 16.Eklund, P., Galán, M.A., Karlsson, J.: Rough Monadic Interpretations of Pharmacologic Information. In: ICCS 2007, pp. 108–113. Springer, London (2007). https://doi.org/10.1007/978-1-84628-992-7_15 CrossRefGoogle Scholar
- 17.Eklund, P., Galán, M., Gähler, W.: Partially ordered monads for monadic topologies, rough sets and kleene algebras. Electron. Notes Theor. Comput. Sci.
**225**, 67–81 (2009). https://doi.org/10.1016/j.entcs.2008.12.067 CrossRefGoogle Scholar - 18.Eklund, P., Galán, M.A., Karlsson, J.: Categorical innovations for rough sets. In: Studies in Computational Intelligence, pp. 45–69. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-89921-1_2
- 19.Eklund, P., Galán, M., Helgesson, R., Kortelainen, J.: Fuzzy terms. Fuzzy Sets Syst.
**256**, 211–235 (2014). https://doi.org/10.1016/j.fss.2013.02.012 MathSciNetCrossRefGoogle Scholar - 20.Eklund, P., Galán, M.A., Kortelainen, J., Ojeda-Aciego, M.: Monadic formal concept analysis. In: International Conference on Rough Sets and Current Trends in Computing. Lecture Notes in Computer Science, pp. 201–210. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-08644-6_21 Google Scholar
- 21.Eklund, P., Hohle, U., Kortelainen, J.: Modules in health classifications. In: 2017 IEEE International Conference on Fuzzy Systems. IEEE, Piscataway (2017). https://doi.org/10.1109/fuzz-ieee.2017.8015430
- 22.Eklund, P., Johansson, M., Kortelainen, J.: The logic of information and processes in system-of-systems applications. In: Soft Computing Applications for Group Decision-Making and Consensus Modeling, pp. 89–102. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-60207-3_6 Google Scholar
- 23.Eklund, P., García, J.G., Höhle, U., Kortelainen, J.: Semigroups in complete lattices: quantales, modules and related topics. In: Developments in Mathematics, vol. 58. Springer, Berlin (2018)Google Scholar
- 24.Gähler, W.: Monadic topology – a new concept of generalized topology. In: Gähler, W., Herrlich, H., Preuß, G. (eds.) Recent Developments of General Topology and Its Applications, pp. 136–149. Akademie Verlag, Berlin (1992)zbMATHGoogle Scholar
- 25.Goguen, J.: L-fuzzy sets. J. Math. Anal. Appl.
**18**, 145–174 (1967)MathSciNetCrossRefGoogle Scholar - 26.Höhle, U., Stout, L.: Foundations of fuzzy sets. Fuzzy Sets Syst.
**40**, 257–296 (1991)MathSciNetCrossRefGoogle Scholar - 27.Kelly, G.M.: Basic Concepts of Enriched Category Theory. Lecture Notes Series, vol. 64. Cambridge University Press, London (1982)Google Scholar
- 28.MacLane, S.: Natural associativity and commutativity. Rice Univ. Stud.
**49**, 28–46 (1963)MathSciNetzbMATHGoogle Scholar - 29.MacLane, S.: Categorical algebra. Bull. Am. Math. Soc.
**71**(1), 40–106 (1965)MathSciNetCrossRefGoogle Scholar - 30.MacLane, S.: Categories for the Working Mathematician. Springer, Berlin (1971)zbMATHGoogle Scholar
- 31.Nogues, M., Al, E.: Active and healthy ageing: from health prevention to personal care. CARSAT-MACVIA 7 meeting. Montpellier, 7–8th December 2015. Eur. Geriatr. Med.
**8**(5–6), 511–519 (2017). https://doi.org/10.1016/j.eurger.2017.07.004 CrossRefGoogle Scholar - 32.Seppala, L.J., Al, E.: Fall-risk-increasing drugs: a systematic review and meta-analysis: II. Psychotropics. J. Am. Med. Dir. Assoc.
**19**(4), 371.e11–371.e17 (2018). https://doi.org/10.1016/j.jamda.2017.12.098 Google Scholar - 33.Seppala, L.J., et al.: Fall-risk-increasing drugs: a systematic review and meta-analysis: III. Others. J. Am. Med. Dir. Assoc.
**19**(4), 372.e1–372.e8 (2018). https://doi.org/10.1016/j.jamda.2017.12.099 Google Scholar - 34.Stout, L.N.: The logic of unbalanced subobjects in a category with two closed structures. In: Applications of Category Theory to Fuzzy Subsets, pp. 73–105. Springer, Netherlands (1992). https://doi.org/10.1007/978-94-011-2616-8_4 CrossRefGoogle Scholar